تاثیر دمای سنتز بر خواص فوتوکاتالیستی نانوذرات تیتانیا تهیه شده به روش سولوترمال

نوع مقاله : علمی و پژوهشی

نویسندگان

1 دانشگاه سیستان و بلوچستان

2 مرکز پژوهش های صنعتی ایران

چکیده

در این پژوهش تاثیر دمای سنتز بر ترکیب فاز، اندازه بلور، مورفولوژی و فعالیت فوتوکاتالیستی نانو ذرات دی اکسید تیتانیوم تهیه شده به روش سولوترمال بررسی شده است. نتایج نشان داد که تبلور ذرات از درون بستر ژل مانند رخ می دهد و با افزایش دمای سنتز، اندازه ذرات از 4 تا 8 نانومتر تغییر می کند. راندمان فوتوکاتالیستی مطلوبی در تمام نمونه ها (تا 94%) مشاهده شد. نانو ذراتی که در دمای 120 درجه سانتی گراد سنتز شدند بالاترین فعالیت فوتوکاتالیستی را نشان دادند.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Synthesis Temperature on Photocatalytic Activity of TiO2 Nanoparticles Prepared via Solvothermal Method

نویسندگان [English]

  • Emad Khaksar 1
  • mahdi Shafiee Afarani 1
  • Abdorreza Samimi 2
1 School of Materials Engineering, University of Sistan and Baluchestan, Zahedan.
2 Nanotechnology Reasearch Institute, University of Sistan and Baluchestan, Zahedan.
چکیده [English]

In this research, the effect of synthesis temperature on the phase composition, crystal size, morphology and photocatalytic activity of titanium dioxide nanoparticles prepared by solvothermal method was investigated. The results showed that the crystallinity of the particles occurs within the gel-like matrix and the particles size increases from 4 to 8 nm by increasing the synthesis temperature. All samples showed suitable photodegradiation up to 94% yield. Nano-particles synthesized at 120°C showed the highest photocatalytic activity.

کلیدواژه‌ها [English]

  • Synthesis
  • Solvothermal
  • TiO2 Nanoparticles
  • Photocatalytic Activity
1. Hang R., Gao L., "Preparation of Nanosized Titania by Hydrolysis of Alkoxide Titanium in Micelles", Materials Research Bulletin, Vol. 37, pp. 1659-1666, (2002).
2. Murugan A.V., Samuel V., Ravi V., "Synthesis of Nanocrystalline Anatase TiO2 by Microwave Hydrothermal Method", Materials Letters, Vol. 60, pp. 479–480, (2006).
3. Liqiang J., Xiaojunb S., Baifua X., Baiqib W., Weimin C., Honggang F., "The Preparation and
Characterization of La Doped TiO2 Nanoparticles and their Photocatalytic Activity", Journal of Solid State Chemistry, Vol. 177, pp. 3375–3382, (2004).
4. Yu J.H., Kim S.Y., Lee J.S., Ahn K.H., "In-Situ Observation of Formation of Nanosized TiO2 Powder in Chemical Vapor Condensation", Nanostructured Materials, Vol. 12, pp. 199-202, (1999).
5. Yuan Z., Zhang L., "Influence of ZnO+Fe2O3 Additives on the Anatase-to-Rutile Transformation of Nanometer TiO2 Powders", Nanostructured Materials, Vol. 10, pp. 1127-l133, (1998).
6. Fox M.A., Dulay M. T., "Heterogeneous photocatalysis", Chemical Reviews, Vol. 93, pp. 341-357, (1993).
7. Kavan L., Gratzel M., Gilbert S.E., Klemenz C., Scheel H.J., "Electrochemical and Photoelectrochemical Investigation of Single-Crystal Anatase", Journal of the American Chemical Society, Vol. 118, pp. 6716–23, (1996).
8. Yu J., Zhao X., Du J., Chen W., "Preparation, microstructure and photocatalytic activity of the porous TiO2 anatase coating by sol–gel processing", Journal of Sol-Gel Science and Technology, Vol. 17, pp. 163–171, (2000).
9. Yu J., Yu H., Cheng B., Zhao X., Yu J., Ho W., "The effect of calcination temperature on the surface microstructure and photocatalytic activity of TiO2 thin films prepared by liquid phase deposition", The Journal of Physical Chemistry B, Vol. 107, pp. 13871–13879, (2003).
10. Kim C., Moon B., Park J., Chung S., Son S., "Synthesis of nanocrystalline TiO2 in toluene by a solvothermal route", Journal of Crystal Growth, Vol. 254, pp. 405–410, (2003).
11. Su C., Hong B.Y., Tseng, C.M., "Sol–gel preparation and photocatalysis of titanium dioxide", Catalysis Today, Vol. 96, pp. 119–126, (2004).
12. Yang P., Lu C., Hua N., Du Y., "Titanium dioxide nanoparticles co-doped with Fe3+ and Eu3+ ions for photocatalysis", Materials Letters, Vol. 57, pp. 794–801, (2002).
13. Nakaso K., Okuyama K., Shimada M., Pratsinis S., "Effect of reaction temperature on CVD-made TiO2 primary particle diameter", Chemical Engineering Science, Vol. 58, pp. 3327–3335, (2003).
14. Kominami H., Kalo J., Takada Y., Doushi Y., Ohtani B., Nishimoto S., Inoue M., Inui T., "Novel synthesis of microcrystalline titanium(IV) oxide having high thermal stability and ultra-high photocatalytic activity: thermal decomposition of titanium(IV) alkoxide in organic solvents", Catalysis Letters, Vol. 46, pp. 235–240, (1997).
15. Carp O., Huisman C., Reller A., "Photoinduced reactivity of titanium dioxide", Progress in Solid State Chemistry, Vol. 32, pp. 33-177, (2004).
16. Wahi R.K., Liu Y., Falkner J.C., Colvin L., "Solvothermal synthesis and characterization of anatase TiO2 nanocrystals with ultrahigh surface area", Journal of Colloid and Interface Science, Vol. 302, pp. 530–536, (2006).
17. Nam W.S., Han G.Y., "Characterization and Photocatalytic Performance of Nanosize TiO2 Powders Prepared by the Solvothermal Method", Korean Journal of Chemical Engineering, Vol. 20, pp. 1149-1153, (2003).
18. Burggraaf A.G., "Fundamentals of Inorganic Membrane Science and Technology", Elsevier, Amsterdam, , pp. 313, (1996)
19. Mehranpour H., Askari M., Ghamsari M., "Nucleation and Growth of TiO2 Nanoparticles", Nanomaterials, Chapter 1, (2011).
20. Zhang H., Banfield J.F.,"Kinetics of Crystallization and Crystal Growth of Nanocrystalline Anatase in Nanometer-Sized Amorphous Titania", Chemistry of Materials, Vol. 14, pp. 4145-4154, (2002).
CAPTCHA Image