بررسی خواص دی الکتریکی لایه‌های نانوساختار Bi4Ti3O12 و Bi12TiO20 تهیه شده به روش سل- ژل

نوع مقاله : علمی و پژوهشی

نویسنده

دانشگاه کاشان

چکیده

هدف از این تحقیق، سنتز و مشخصه یابی لایه‌های نانوساختار تیتانات بیسموت با دو ترکیب Bi4Ti3O12 و Bi12TiO20 به روش سل- ژل  می باشد. همچنین تغییرات خواص دی الکتریک نمونه‌های تهیه شده با دمای آنیل و فرکانس اعمالی مورد بررسی و ارزیابی قرار گرفت. در این راستا دو محلول سل مختلف با نسبت‌های مولار مشخص از مواد اولیه به روش سل- ژل تهیه و پس از لایه نشانی خشک و سپس در دماهای مختلف 300 تا 700 درجه سانتیگراد آنیل شدند. به منظور بررسی ساختار و خواص لایه‌های سنتز شده از دستگاه‌های آنالیز طیفسنج مادون قرمز، پراش اسعه ایکس، میکروسکوپ الکترونی روبشی، طیف سنجی پراش انرژی پرتو ایکس و LCRمتر استفاده شد. بررسی‌های فازی نمونه‌ها به وسیله پراش اسعه ایکس حاکی از تشکیل ترکیبات Bi4Ti3O12 با ساختار اورتورومبیک و Bi12TiO20 با ساختار مکعبی می‌باشند که در دمای600 درجه سانتیگراد به مدت یک ساعت به طور کامل کریستاله شده‌اند. نتایج آزمایشات خواص دی الکتریک نشان داد که با افزایش دمای آنیل، ثابت دی الکتریک و اتلاف دی الکتریک در هر دو نمونه افزایش یافتند. همچنین با افزایش فرکانس، ثابت دی‌الکتریک نمونه‌ها کاهش و تلفات دی الکتریک آن‌ها افزایش می‌یابد.

کلیدواژه‌ها


عنوان مقاله [English]

Dielectric Properties of Nanostructured Bi4Ti3O12 and Bi12TiO20 Films Prepared by Sol-Gel Method

نویسنده [English]

  • Abbas Sadeghzadeh-Attar
University of Kashan
چکیده [English]

In this paper, bismuth titanate (Bi4Ti3O12, Bi12TiO20) nanostructured films were successfully fabricated via sol-gel method. The structure and dielectric properties of the prepared thin films as a function of annealing temperature and applied frequency were investigated. In this order, two different solutions with optimal ratio of raw materials were prepared. The solutions were deposited on the substrates by dip coating, and then heat treated at different temperatures ranging from 300 to 700 oC for 1 h. The prepared films were characterized by means of Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy and LCR meter. It was found that the single phases were formed when Bi4Ti3O12 and Bi12TiO20 samples were annealed at 600 oC, therefore, optimal condition could be obtained at this temperature. Dielectric studies showed that the dielectric constant and loss factor were increased with increased annealing temperatures. Also, the values of dielectric constant were decreased and dielectric loss increased with increasing frequency.
 

کلیدواژه‌ها [English]

  • Bismuth titanate
  • Nanostructured films
  • Sol-gel process
  • Microstructure
  • Dielectric properties
  • characterization
1. Lallart M., "Ferroelectrics-Applications", InTech, Rijeka, Croatia, (2011).
2. Scott J.F., "Applications of modern ferroelectrics", Science, Vol. 315, pp. 954-959, (2007).
3. Aurivillius B., "Mixed bismuth oxides with layer lattices; II, structure of Bi4Ti3O12", Arkiv fur Kemi, Vol. 58, pp. 499-512, (1949).
4. Aurivillius B.P., Fang H., "Ferroelectricity in the compound Ba2Bi4Ti5O18", Phys. Rev., Vol. 126, pp. 893-896, )1962).
5. Liu Y., Zhang M., Li L., Zhang X., "One-dimensional visible-light-driven bifunctional photocatalysts based on Bi4Ti3O12 nanofiber frameworks and Bi2XO6(X=Mo, W) nanosheets", Applied Catalysis B: Environmental, Vol. 160-161, pp. 757-766, (2014).
6. Coondoo I., "Ferroelectrics", InTech, Rijeka, Croatia, (2010).
7. Pavlović N., Kancko D., Szecsenyi K.M., Srdić V.V., "Synthesis and characterization of Ce and La modified bismuth titanate", Processing and Application of Ceramics, Vol. 3, pp. 88-95, (2009).
8. Jeong B.-Jik, Joung M.-Ri, Kim J.Seong, Nahm S., Choi J.-Won, Hwang S.-Ju, "Sintering mechanism and microwave dielectric properties of Bi12TiO20 ceramics", Journal of American Ceramic Society, Vol. 96, pp. 3742-3746, (2013).
9. Alfonso J.E., Olaya J.J., Bedoya-Hincapie C.M., Toudert J., Serna R., "Annealing effect on the structural and optical properties of sputter-grown bismuth titanium oxide thin films", Materials, Vol. 7, pp. 3427-3434, (2014).
10. Joung M.-Ri, Jeong B.-Jik, Kim J.-Seong, Woo S.-Ran, Park H.-Min, Nahm S., "Sintering process and microwave dielectric properties of Bi8TiO14 ceramics", Journal of American Ceramic Society, Vol. 97, pp. 2491-2495, (2014).
11. Shi H., Tan H., Zhu W.-bin, Sun Z., Ma Y., Wang E. "Electrospun Cr-doped Bi4Ti3O12/Bi2Ti2O7 heterostructure fibers with enhanced visible-light photocatalytic properties", Journal of Materials Chemistry, Vol. A3, pp. 6586-6591, (2015).
12. Fu B., Zhang Y., Hong M., Jiang F., Cao J., "Preparation and microwave dielectric properties of Bi2Ti4O11 ceramics", Journal of Materials Science: Materials Electron, Vol. 24, pp. 3240-3243, (2013).
13. Sui H.T., Yang D.M., Jiang H., Ding Y.L., Yang C.H., "Preparation and electrical properties of Sm-doped Bi2Ti2O7 thin films prepared on Pt (111) substrates", Ceramics International, Vol. 39, pp. 1125-1128 (2013).
14. Kao M.-Cheng, Chen H.-Zern, Young S.-Lin, "The microstructure and ferroelectric properties of Sm and Ta-doped bismuth titanate ferroelectric thin films", Thin Solid Films, Vol. 528, pp. 143-146 (2013).
15. Hou J., Wang Z., Yang C., Zhou W., Jiao S., Zhu H., "Hierarchically plasmonic Z-scheme photocatalyst of Ag/AgCl nanocrystals decorated mesoporous single-crystalline metastable Bi20TiO32 nanosheets", J. Phys. Chem. C, Vol. 117, pp. 5132-5141 (2013).
16. Zhao W., Zhang C., Liu Y., Huang X., Mao F., "Visible-light photocatalytic activity of the Bi2Ti4O11 nanorods", Advanced Materials Research, Vol. 306-307, pp. 1416-1419 (2011).
17. Sun B.-Cheng, Wang H., Xu J.-Wen, Yang L., Zhou S.-Ju, Zhang Y.-Pei, Li Z.-Da, "Effect of annealing temperature on resistance switching and dielectric characteristics of Bi4Ti3O12 thin films", Microelectronic Engineering, Vol. 113, pp. 1-4 (2014).
18. Slavov S.S., Krapchanska M.Z., Kashchieva E.P., Parvanov S.B., Dimitriev Y.B., "Dielectric properties of bismuth titanate ceramics containing SiO2 and Nd2O3 as additives", Processing and Application of Ceramics, Vol. 6 117-122 (2012).
19. Jarsiel T., Caballero A.C., Villegas M., "Aurivillius ceramics: Bi4Ti3O12-based piezoelectrics", Journal of the Ceramic Society of Japan, Vol. 116, pp. 511-518 (2008).
20. Megriche A., Lebrun L., Troccaz M., "Materials of Bi4Ti3Ol2 type for high temperature acoustic piezo-sensors", Sensors and Actuators A, Vol. 78, pp. 88-91 (1999).
21. He H., Yin J., Li Y., Zhang Y., Qiu H., Xu J., Xu T., Wang C., "Size controllable synthesis of single-crystal ferroelectric Bi4Ti3O12 nanosheet dominated with {001} facets toward enhanced visible-light-driven photocatalytic activities", Applied Catalysis B: Environmental, Vol. 156-157, pp. 35-43 (2014).
22. Subohi O., Kumar G.S., Malik M.M., Kurchania R., "Synthesis of bismuth titanate with urea as fuel by solution combustion route and its dielectric and ferroelectric properties", Optik, Vol. 125, pp. 820-823 (2014).
23. Zarycka A., Lisinska-Czekaj A., Czuber J., Orkisz T., Ilczuk J., Czekaj D., "The sol-gel synthesis of bismuth titanate electroceramic thin films", Materials Science-Poland, Vol. 23, pp. 167-175 (2005).
24. Subohi O., Kumar G.S., Malik M.M., Kurchania R., "Optical properties and preparation of bismuth titanate (Bi12TiO20) using combustion synthesis technique", Optik, Vol. 124, pp. 2963-2965 (2013).
25. Valant M., Suvorov D., "A stoichiometric model for sillenites", Chemistry of Materials, Vol. 14, pp. 3471-3476 (2002).
26. Hu Y., Sinclair D.C., "Relaxor-like dielectric behavior in stoichiometric sillenite Bi12SiO20", Chemistry of Materials, Vol. 25, pp. 48−54 (2013).
27. Marinova V., Hsieh M.-Li, Lin S.H., Hsu K.Y., "Effect of ruthenium doping on the optical and photorefractive properties of Bi12TiO20 single crystals", Optics Communications, Vol. 203, pp. 377-384 (2002).
28. Sebastian M.T., Jantunen H., "Low loss dielectric materials for LTCC applications: a review", International Materials Review, Vol. 53, pp. 57-90 (2008).
29. Yao W.F., Wang H., Xu X.H., Cheng X.F., Huang J., Shang S.X., Yang X.N., Wan M., "Photocatalytic property of bismuth titanate Bi12TiO20 crystals", Applied Catalysis A: General, Vol. 243, pp. 185-190 (2003).
30. Shen C., Zhang H., Zhang Y., Xu H., Yu H., Wang J., Zhang S., "Orientation and temperature dependence of piezoelectric properties for sillenite-type Bi12TiO20 and Bi12SiO20 single crystals", Crystals, Vol. 4, pp. 141-151 (2014).
31. Tasaki Y., Sekita Y., Tanaka T., Yoshizawa S., Yoda K., Nittamachi T., "Low temperature preparation of (Bi,Nd)4Ti3O12 thin films by liquid-delivery MOCVD using neodymium precursors with high deposition efficiency", Integrated Ferroelectrics, Vol. 81, pp. 271-279 (2006).
32. Bedoya-Hincapie C.M., Restrepo-Parra E., Olaya-Florez J.J., Alfonso J.E., Flores-Ruiz F.J., Espinoza-Beltran F.J., "Ferroelectric behavior of bismuth titanate thin films grown via magnetron sputtering", Ceramics International, Vol. 40, pp. 11831-11836 (2014).
33. Ramesh R., Luther K., Wilkens B., Hart D.L., Wang E., Tarascon J.M., Inam A., Wu X.D., Venkatesan T., "Epitaxial growth of ferroelectric bismuth titanate thin films by pulsed laser deposition", Applied Physics Letters, Vol. 57, pp. 1505-1508 (1990).
34. Theis C.D., Yeh J., Schlom D.G., Hawley M.E., Brown G.W., Jiang J.C., Pan X.Q., "Adsorption-controlled growth of Bi4Ti3O12 by reactive MBE", Applied Physics Letters, Vol. 72, pp. 2817-2819 (1998).
35. Kao M.C., Chen H.Z., Young S.L., Chuang B.N., Jiang W.W., Song J.S., Jhan S.S., Chiang J.L., Wu L.T., "Effects of tantalum doping on microstructure and ferroelectric properties of Bi4Ti3O12 thin films prepared by a sol-gel method", Journal of Crystal Growth, Vol. 338, pp. 139-142 (2012).
36. Harjuoja J., Vayrynen S., Putkonen M., Niinisto L., Rauhala E., "Crystallization of bismuth titanate and bismuth silicate grown as thin films by atomic layer deposition", Journal of Crystal Growth, Vol. 286, pp. 376-383 (2006).
37. Zhang H., Lü M., Liu S., Xiu Z., Zhou G., Zhou Y., Qiu Z., Zhang A., Ma Q., "Preparation and photocatalytic properties of sillenite Bi12TiO20 films", Surface & Coatings Technology, Vol. 202, pp. 4930-4934 (2008).
38. Lazarević Z., Stojanović B.D., Varela J.A., "An approach to analyzing synthesis, structure and properties of bismuth titanate ceramics", Science of Sintering, Vol. 37, pp. 199-216, (2005).
39. Koch C.C., "Nanostructured Materials, Processing, Properties and Potential Applications", Noyes Publications, New York, (2002).
40. Yoleva A., Djambazov S., Ivanova Y., Kashchieva E., "Sol-gel synthesis of titanate phases from Aurivillius and sillenite type (Bi4Ti3O12 and Bi12TiO20) ", Journal of the University of Chemical Technology and Metallurgy, Vol. 46, pp. 255-260 (2011).
41. Srdic V.V., Mojic B., Bajac B., Rakic S., Pavlovic N., "Bismuth titanate thin films prepared by wet-chemical techniques: effect of sol ageing time", Journal of Sol-Gel Technology, Vol. 62, pp. 259-265 (2012).
42. Chen Y., Zhao G., Liang H., Xia W., "Synthesis and characterization of Bi4Ti3O12, (Bi3.25La0.75)Ti3O12, and Bi4Ti3O12/(Bi3.25La0.75)Ti3O12 multilayered films prepared using novel photochemical sol-gel method", Materials Letters, Vol. 66, pp. 357-359 (2012).
43. Joint Committee on Powder Diffraction Standard (JCPDS), International Center for Diffraction Data, Swarthmore, PA, (1996).
44. Cullity B.D., "Elements of X-ray Diffraction", Addison Wesley pub., Menlo Park, CA, USA, p. 284, (1978).
45. Moulson A.J., Herbert J.M., "Electroceramics", 2nd Edition, John Wiley & Sons, New York, (2003).
46. Buessem W.R., Cross L.E., Goswami A.K., "Phenomenological theory of high permittivity in fine-grained barium titanate", Journal of American Ceramic Society, Vol. 49, pp. 33-36 (1966).
47. Khollam Y.B., Deshpande S.B., Potdar H.S., Bhoraskar S.V., Sainkar S.R., Date S.K., "Simple oxalate precursor route for the preparation of barium strontium titanate: Ba1−xSrxTiO3 powders", Journal of Materials Characterization, Vol. 54, pp. 63-74 (2005).
48. Li Y.L., Chen L.Q., Asayama G., Schlom D.G., Zurbuchen M.A., Streiffer S.K., "Ferroelectric domain structures in SrBi2Nb2O9 epitaxial thin films: electron microscopy and phase-field simulations", Journal of Applied Physics, Vol. 95, pp. 6332-6340 (2004).
CAPTCHA Image