رفتار میکروتریبولوژی پوشش‌های الکتروفورتیک نانوکامپوزیتی HA-TiO2

نوع مقاله : علمی و پژوهشی

نویسنده

دانشگاه کاشان

چکیده

در این پژوهش، از لایه‌نشانی الکتروفورتیک برای ایجاد پوشش‌های نانوکامپوزیتی HA-TiO2 با ترکیب 0، 10 و 20 درصد وزنی تیتانیا بر روی زیرلایه Ti-6Al-4V استفاده شد. آزمون ریزخراش در حالت نیروی پیشرونده برای بررسی چسبندگی، تریبولوژی و اندازه‌گیری چقرمگی شکست پوشش‌ها انجام شد. مقادیر فشار تماسی بحرانی در آزمون ریزخراش برای آغاز ایجاد ترک و جدا شدن لایه رسوبی از سطح با افزودن تیتانیا در ساختار پوشش افزایش یافت. بر اساس تئوری مکانیک شکست الاستیک خطی بیشترین مقدار چقرمگی شکست در نمونه کامپوزیتی با 20 درصد وزنی تیتانیا حاصل شد. شیارهای حاصل از آزمون ریزخراش، توسط میکروسکوپ الکترونی روبشی مطالعه شدند.

کلیدواژه‌ها


عنوان مقاله [English]

Micro-tribological Behavior of Electrophoretically Deposited HA-TiO2 Nanocomposite Coatings

نویسنده [English]

  • Hamidreza Farnoush
University of Kashan
چکیده [English]

In the present study, the HA-TiO2 nanostructured composite coatings with 0, 10 and 20 wt.% TiO2 were fabricated by electrophoretic deposition on Ti-6Al-4V substrate. Micro-scratch tests in progressive load mode, were examined for evaluation of adhesion strength, tribology and fracture toughness of coatings. The critical contact pressures in micro-scratch test for crack initiation and delamination were increased by the addition of TiO2 content in the coating. Moreover, according to the linear elastic fracture mechanics, the maximum fracture toughness of coatings was obtained for HA-20 wt.% TiO2 sample. The scratch grooves were studied by scanning electron microscope.

کلیدواژه‌ها [English]

  • Micro-scratch
  • Electrophoretic Deposition
  • Hydroxyapatite
  • Titania
  1. Paital S.R., Dahotre N.B., "Calcium phosphate coatings for bio-implant applications : Materials, performance factors , and methodologies", Scanning, Vol. 66, pp. 1-70, (2009).
  2. Jeong Y.-h., Choe H.-c., Brantley W.A., Sohn I.-b., "Surface & Coatings Technology Hydroxyapatite thin film coatings on nanotube-formed Ti – 35Nb – 10Zr alloys after femtosecond laser texturing", Surface & Coatings Technology, (2012).
  3. Zhang X., Li Q., Li L., Zhang P., Wang Z., Chen F., "Fabrication of hydroxyapatite / stearic acid composite coating and corrosion behavior of coated magnesium alloy", Materials Letters, Vol. 88, pp. 76-78, (2012).
  4. Farnoush H., Abdi Bastami A., Sadeghi A., Aghazadeh Mohandesi J., Moztarzadeh F., "Tribological and corrosion behavior of friction stir processed Ti-CaP nanocomposites in simulated body fluid solution", Journal of the Mechanical Behavior of Biomedical Materials, Vol. 20, pp. 90-97, (2013).
  5. Kobayashi A., Subramanian B., "Hydroxyapatite and YSZ reinforced hydroxyapatite coatings by gas tunnel type plasma spraying", pp. 213-216, (2013).
  6. Mittal M., Nath S.K., Prakash S., "Improvement in mechanical properties of plasma sprayed hydroxyapatite coatings by Al2O3 reinforcement", Materials Science and Engineering C, Vol. 33, pp. 2838-2845, (2013).
  7. Pateyron B., Pawłowski L., Calve N., Delluc G., Denoirjean A., "Modeling of phenomena occurring in plasma jet during suspension spraying of hydroxyapatite coatings", Surface and Coatings Technology, Vol. 214, pp. 86-90, (2013).
  8. Yang Y.C., Yang C.Y., "Mechanical and histological evaluation of a plasma sprayed hydroxyapatite coating on a titanium bond coat", Ceramics International, Vol. 39, pp. 6509-6516, (2013).
  9. Adibnia S., Nemati A., Fathi M.H., Baghshahi S., "Synthesis and characterization of sol-gel derived Hydroxyapatite- Bioglass composite nanopowders for biomedical applications", Tissue Engineering, Vol. 12, pp. 51-57, (2012).
  10. Yelten A., Yilmaz S., Oktar F.N., "Sol – gel derived alumina – hydroxyapatite – tricalcium phosphate porous composite powders", Ceramics International, Vol. 38, pp. 2659-2665, (2012).
  11. Abdi Bastami A., Farnoush H., Sadeghi A., Aghazadeh Mohandesi J., "Sol–gel derived nanohydroxyapatite film on friction stir processed Ti–6Al–4V substrate", Surface Engineering, Vol. 29, pp. 205-210, (2013).
  12. Farnoush H., Mohandesi J.A., Fatmehsari D.H., "Effect of particle size on the electrophoretic deposition of hydroxyapatite coatings: A kinetic study based on a statistical analysis", International Journal of Applied Ceramic Technology, Vol. 10, pp. 87-96, (2013).
  13. Farnoush H., Aghazadeh Mohandesi J., Haghshenas Fatmehsari D., Moztarzadeh F., "Modification of electrophoretically deposited nano-hydroxyapatite coatings by wire brushing on Ti–6Al–4V substrates", Ceramics International, Vol. 38, pp. 4885-4893, (2012).
  14. Farnoush H., Aghazadeh Mohandesi J., Haghshenas Fatmehsari D., Moztarzadeh F., "A kinetic study on the electrophoretic deposition of hydroxyapatite–titania nanocomposite based on a statistical approach", Ceramics International, Vol. 38, pp. 6753-6767, (2012).
  15. Farnoush H., Sadeghi A., Abdi Bastami A., Moztarzadeh F., Aghazadeh Mohandesi J., "An innovative fabrication of nano-HA coatings on Ti-CaP nanocomposite layer using a combination of friction stir processing and electrophoretic deposition", Ceramics International, Vol. 39, pp. 1477-1483, (2013).
  16. Gu C., Fu Q., Li H., Lu J., Zhang L., "Study on special morphology hydroxyapatite bioactive coating by electrochemical deposition", pp. 256-260, (2013).
  17. Li D.H., Lin J., Lin D.Y., Wang X.X., "Synthesis and charaterization of silicon-substituted hydroxyapatite coating by electrochemical deposition on Ti substrate", Chinese Journal of Inorganic Chemistry, Vol. 27, pp. 1027-1032, (2011).
  18. Li D.H., Lin J., Lin D.Y., Wang X.X., "Synthesized silicon-substituted hydroxyapatite coating on titanium substrate by electrochemical deposition", Journal of Materials Science: Materials in Medicine, Vol. 22, pp. 1205-1211, (2011).
  19. Lu X., Zhang B., Wang Y., Zhou X., Weng J., Qu S., Feng B., Watari F., Ding Y., Leng Y., "Nano-Ag-loaded hydroxyapatite coatings on titanium surfaces by electrochemical deposition", Journal of the Royal Society Interface, Vol. 8, pp. 529-539, (2011).
  20. Wang Y., Lu X., Li D., Feng B., Qu S., Weng J., "Hydroxyapatite/chitosan composite coatings on titanium surfaces by pulsed electrochemical deposition", Acta Polymerica Sinica, Vol., pp. 1244-1252, (2011).
  21. Antebi B., Cheng X., Harris J.N., Gower L.B., Chen X.D., Ling J., "Biomimetic collagen-hydroxyapatite composite fabricated via a novel perfusion-flow mineralization technique", Tissue Engineering - Part C: Methods, Vol. 19, pp. 487-496, (2013).
  22. Cai Q., Feng Q., Liu H., Yang X., "Preparation of biomimetic hydroxyapatite by biomineralization and calcination using poly(l-lactide)/gelatin composite fibrous mat as template", Materials Letters, Vol. 91, pp. 275-278, (2013).
  23. Ciobanu G., Ciobanu O., "Investigation on the effect of collagen and vitamins on biomimetic hydroxyapatite coating formation on titanium surfaces", Materials Science and Engineering C, Vol. 33, pp. 1683-1688, (2013).
  24. Deplaine H., Lebourg M., Ripalda P., Vidaurre A., Sanz-Ramos P., Mora G., Prõsper F., Ochoa I., Doblare M., Gõmez Ribelles J.L., Izal-Azcarate I., Gallego Ferrer G., "Biomimetic hydroxyapatite coating on pore walls improves osteointegration of poly(L-lactic acid) scaffolds", Journal of Biomedical Materials Research - Part B Applied Biomaterials, Vol. 101 B, pp. 173-186, (2013).
  25. Peng F., Shaw M.T., Olson J.R., Wei M., "Influence of surface treatment and biomimetic hydroxyapatite coating on the mechanical properties of hydroxyapatite/poly(L-lactic acid) fibers", Journal of Biomaterials Applications, Vol. 27, pp. 641-649, (2013).
  26. Wu M., Wang Q., Liu X., Liu H., "Biomimetic synthesis and characterization of carbon nanofiber/ hydroxyapatite composite scaffolds", Carbon, Vol. 51, pp. 335-345, (2013).
  27. Farnoush H., Muhaffel F., Cimenoglu H., "Fabrication and characterization of nano-HA-45S5 bioglass composite coatings on calcium-phosphate containing micro-arc oxidized CP-Ti substrates", Applied Surface Science, Vol. 324, pp. 765-774, (2015).
  28. Mohan L., Durgalakshmi D., Geetha M., Narayanan T.S.N.S., Asokamani R., "Electrophoretic deposition of nanocomposite ( HAp + TiO 2 ) on titanium alloy for biomedical applications", Ceramics International, Vol. 38, pp. 3435-3443, (2012).
  29. Sadat-shojai M., Khorasani M.-t., Dinpanah-khoshdargi E., Jamshidi A., "Acta Biomaterialia Synthesis methods for nanosized hydroxyapatite with diverse structures", Acta Biomaterialia, (2013).
  30. Trommer R.M., Santos L.A., Bergmann C.P., "Alternative technique for hydroxyapatite coatings", Vol. 201, pp. 9587-9593, (2007).
  31. Yang Y., Kim K.-h., Ong J.L., "A review on calcium phosphate coatings produced using a sputtering process — an alternative to plasma spraying", Science, Vol. 26, pp. 327-337, (2005).
  32. Boccaccini A.R., Keim S., Ma R., Li Y., Zhitomirsky I., "Electrophoretic deposition of biomaterials", Journal of the Royal Society, Interface / the Royal Society, Vol. 7 Suppl 5, pp. S581-613, (2010).
  33. Wei M., Ruys A.J., Swain M.V., Milthorpe B.K., Sorrell C.C., "Hydroxyapatite-coated metals: Interfacial reactions during sintering", Vol. 6, pp. 101-106, (2006).
  34. Cannillo V., Lusvarghi L., Sola A., "Production and characterization of plasma-sprayed TiO2 – hydroxyapatite functionally graded coatings", Journal of the European Ceramic Society, Vol. 28, pp. 2161-2169, (2008).
  35. Zhou H., Lee J., "Nanoscale hydroxyapatite particles for bone tissue engineering", Acta Biomaterialia, Vol. 7, pp. 2769-2781, (2011).
  36. Dorozhkin S.V., "Nanosized and nanocrystalline calcium orthophosphates", Acta Biomaterialia, Vol. 6, pp. 715-734, (2010).
  37. Akono A.T., Randall N.X., Ulm F.J., "Experimental determination of the fracture toughness via microscratch tests: Application to polymers, ceramics, and metals", Journal of Materials Research, Vol. 27, pp. 485-493, (2012).
  38. Barnes D., Johnson S., Snell R., Best S., "Using scratch testing to measure the adhesion strength of calcium phosphate coatings applied to poly ( carbonate urethane ) substrates", Journal of the Mechanical Behavior of Biomedical Materials, Vol. 6, pp. 128-138, (2012).
  39. Farnoush H., Mohandesi J.A., Çimenoğlu H., "Micro-scratch and corrosion behavior of functionally graded HA-TiO 2 nanostructured composite coatings fabricated by electrophoretic deposition", Journal of the mechanical behavior of biomedical materials, Vol. 46, pp. 31-40, (2015).
  40. Forsgren J., Svahn F., Jarmar T., "Formation and adhesion of biomimetic hydroxyapatite deposited on titanium substrates", Acta Biomaterialia, Vol. 3, pp. 980-984, (2007).
  41. Akono A.T., Ulm F.J., "Fracture scaling relations for scratch tests of axisymmetric shape", Journal of the Mechanics and Physics of Solids, Vol. 60, pp. 379-390, (2012).
  42. Li H., Khor K.A., Cheang P., "Young’s modulus and fracture toughness determination of high velocity oxy-fuel-sprayed bioceramic coatings", Vol. 155, pp. 21-32, (2002).
  43. Li H., Khor K.A., Kumar R., Cheang P., "Characterization of hydroxyapatiteynano-zirconia composite coatings deposited by high velocity oxy-fuel ( HVOF ) spray process", Surface and Coatings Technology, Vol. 182, pp. 227-236, (2004).
  44. Leguillon D., "Influence of micro-voids on toughness of interfaces", Damage and Failure of Interface, pp. 113–120, (1997).
  45. Li H., Khor K.A., Cheang P., "Titanium dioxide reinforced hydroxyapatite coatings deposited by high velocity oxy-fuel ( HVOF ) spray", Science, Vol. 23, pp. 85-91, (2002).
  46. Saber-samandari S., Berndt C.C., Gross K.A., "Acta Biomaterialia Selection of the implant and coating materials for optimized performance by means of nanoindentation", Acta Biomaterialia, Vol. 7, pp. 874-881, (2011).
CAPTCHA Image