ارزیابی کریستالی و فازی هیدروکسی آپاتیت سنتز شده به طریق سل-ژل با نسبت های مختلف Ca/P

نوع مقاله : علمی و پژوهشی

نویسندگان

1 یزد

2 دانشگاه علم و صنعت ایران

چکیده

در این مطالعه با استفاده از مواد اولیه پنتا اکسید فسفر (P2O5) و کلسیم نیترات چهار آبه (Ca(NO3)2.4H2O) و به کارگیری روش سل –ژل سنتز پودر هیدروکسی آپاتیت با سه نسبت مولی متفاوت کلسیم به فسفر (Ca/P) معادل 6/1، 5/1 و 67/1 انجام گرفته است. نتایج پراش پرتوی اشعه ایکس (XRD) نشان می دهد که بالاترین شدت قله پراش برای فازهای هیدروکسی آپاتیت و بتا-تری کلسیم فسفات -TCP متعلق به پودر سنتز شده با نسبت 6/1Ca/P = می باشد. وجود این دو فاز به طور همزمان در پودر سنتز شده باعث شده تا یک بیوسرامیک دو فازی با قابلیت استخوان سازی مناسب ایجاد شود. با عملیات حرارتی در دمای 1100 درجه سانتی گراد، شدت قله های پراش فاز-تری کلسیم فسفات (Ca3(PO4)2) در هر سه نمونه افزایش یافته و از شدت قله های پراش هیدروکسی آپاتیت کاسته می شود به طوری که برای نمونه با 5/1=Ca/P، فاز غالب -تری کلسیم فسفات خواهد بود. نتایج مشاهدات میکروسکوپ الکترونی روبشی (SEM)در بزرگنمایی بالا بخوبی ذرات نانو هیدروکسی آپاتیت در مقیاس 10 الی 400 نانومتر را نشان داده و در بزرگنمایی پایین خوشه هایی از نانو ذرات مشاهده می شود. نتایج مطالعات ارزیابی زیست فعالی نشان می دهد که با افزایش نسبت Ca/P، میزان آپاتیت تشکیل شده روی سطح افزایش می یابد که نتیجه آن زیست فعالی بالاتر بیومتریال می باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Crystal and Phase Evolution of Sol-Gel Derived Hydroxyapatite Synthesis with Various Ca/P Ratios

نویسندگان [English]

  • mahdi kalantar 1
  • maryam mojahedian 1
  • narges N. Vahidi 2
1 Yazd University
2 Iran University of Science and Technology
چکیده [English]

Hydroxyapatite due to its biocompatibility and chemical and biological affinity with bone tissue is used for orthopedic implant, dental implant, oral and maxillofacial surgery and as a coating film on metal or alloy implants. In this study, hydroxyapatite powders were synthesized with three different ratios of Ca/P = 1.6, Ca/P = 1.5 and Ca/P = 1.67 using sol-gel method and utilizing P2O5 and Ca(NO3)2.4H2O as starting materials. The X-ray diffraction (XRD) results reveal that the highest peak of hydroxyapatite and -TCP, a biphasic bioceramic with high ability of ossification, are found for the hydroxyapatite powder synthesized with Ca/P=1.6. Microstructural studies at high magnifications reveal a uniform distribution of hydroxyapatite nanoparticles (10-400 nm) while at low magnifications only clusters of nano-particles could be detected. The peak intensity of the TCP phase is increased after applying the sintering heat treatment for all three ratios of Ca/P. By increasing the Ca/P ratio from 1.5 to 1.6, the grain size of the sintered samples increased and the morphology of the microstructure became coarser. The biocompatibility evaluation of the synthesized hydroxyapatite indicate that increasing the ratio of Ca/P will increase the volume and rate of apatite formation on the surface of the sintered samples.

کلیدواژه‌ها [English]

  • Hydroxyapatite
  • Sol-gel
  • Calcination, phase analysis
  • Microstructure
  • Sintering
  • Bioactivity
1. Hench L.L., Wilson J., “An introduction to bio-ceramics”, World Scientific, Singapore, (1993).
2. Burg K.J.L, Porter S, Kellam J.F, “Biomaterial development for bone tissue engineering”, Biomaterials, Vol. 21, pp. 2347-2359, (2000).
3. Dash A.K, Cudworth G.C, “Therapeutic applications of implantable drug delivery systems”, J. Pharmacol. Toxicol. Method, Vol. 40, pp. 1-12, (1998).
4. Suchanek W, Yoshimura M, “Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants”, Journal of Materials Research., Vol. 13, pp. 94-117, (1998).
5. Elliott J.C, “Structure and chemistry of the apatite and other calcium orthophosphates”, Elsevier, Amsterdam, (1994).
6. Gros R.Z. L, “Calcium phosphates in oral biology and medicine”, Monographs in Oral Science, Vol. 15, Karger. Bassel, (1991).
7. Elliot J.C, Murugan R, Ramakrishna S, “Studies in inorganic Chemistry”, Elsevier, Amsterdam, (1994).
8. Lavemia C, Schoenung J.M, “Calcium phosphate ceramics as bone substitutes”, Ceramic Bulletin., Vol. 70, pp. 95-100, (1991).
9. Wijs F. D, Lange L.D, Putter G.L, Wijngaard C.V, Groot D, “Hydroxylapatite blocks for correction of resorption defects in the frontal area of the partly edentulous maxilla”, pp.235-24 in Vincenzini, Ceramics in Clinical Applications, Elesvier, Amesterdam, (1987).
10. Ramselaar M. M, Driessens A, Klak F.C.M, Wijn W.D, Van J.R, “Rates and tissue interactions”, Journal of Materials Science., Vol. 2, pp. 63-70, (1991).
11. Hench L.L, “Bioceramics: from concept to clinic”, journal of the American Ceramic Society. Soc., Vol. 74, pp. 1487-510, (1991).
12. Groot D, “Biocompatibility of clinical implant materials”, Vol. 1, CRC Press, Boca Ratoan, (1981).
13. Geros R.Z.L, “Calcium phosphates in Oral biology and medicine”, Chap. 6, in H.M Myers Ed., Karger, Basel, pp.154-157, (1991).
14. LeGeros R.Z, “Biodegradation and bioresorption of calcium phosphate ceramics”, Clinical Materials, Vol. 14, pp. 65-88, (1993).
15. Saeri M.R, Afshar A, Ghorbani M, Ehsani N, Sorrell C.C, “The wet precipitation process of hydroxyapatite”, Materials Letters, Vol. 57, pp. 4064-4069, (2003).
16. Liu H.S, Chin T.S, Lai L.S, Chiu S.Y, Chiu K.H, Chuang K.H, Change C.S, Lui M.T, “Hydroxyapatite synthesized by a simplified hydrothermal method”, Ceramic International, Vol. 23, pp. 19-25, (1997).
17. Toriyama M, Ravaglioli A, Krajewski A, Celotti G, Piancastelli A, “Synthesis of hydroxyapatite-based powders by mechano-chemical method and their sintering”, Journal of the European Ceramic Society., Vol. 16, pp. 429-436, (1996).
18. Luo P, Nieh T.G, “Synthesis of ultrafine hydroxyapatite particles by a spray dry method”, Materials science and Engineering: C. , Vol. 3, pp. 75-78, (1995).
19. Silva C.C, Pinheiro A.G, Deoliveira R.S, Goes J.C, Aranha N, Deoliveira L.R, Sombra A.S.B, “Properties and invivo investigation of HP nanocrystalline obtained by mechanical alloying”, Materials science and Engineering:C, Vol. 24, pp. 549-554, (2004).
20. Yuncao L, Bozhang C, Hung J.-F, “Synthesis of HP nanoparticles in ultrasonic precipitation”, pp. 1-4, (2005).
21. Kim I.S, Kumta P.N, “Sol–gel synthesis and characterization of nanostructured hydroxyapatite powder”, materials science and Engineering:B., Vol. 111, pp. 232-236, (2004).
22. Liu D.M, Yang Q, Troczynski T, Tseng W. J, “Structural evolution of sol–gel-derived hydroxyapatite Biomaterials”, Vol. 23, pp. 1679-1687, (2002).
23. Landi E, Tampieri A, Celotti G, Sprio S, “Densification behavior and mechanisms of synthetic hydroxyapatites”, Journal of the European Ceramic Society., Vol. 20, pp. 2377-2387, (2000).
24. Bogdanovicience I, Beganskiene A, Suadu K, “Calcium hydroxyapatite ceramics prepared through aqueous sol-gel processing”, Materials Research Bulletin., Vol. 12, pp. 203-212, (2006).
25. Pang Y.X, Bao X, “Influence of temperature, ripening time and calcinations on the morphology and crystallinity of hydroxyapatites nanoparticles”, Journal of the European Ceramic Society. Soc., Vol. 23, pp. 1967-1704, (2003).
26. Warng F, Li M, Liu Y.P, Qi Y.X, “A simple sol-gel technique for preparing hydroxyapatite nanoparticles”, Mater. Letters, Vol. 59, pp. 916-919, (2005).
27. فتحی م، حنیفی آ، روحانی اصفهانی س. ا، "ساخت، مشخصه یابی و ارزیابی مقایسه ای زیست فعالی هیدروکسی آپاتیت نانوساختار"، استقلال-مواد پیشرفته در مهندسی، سال 30، شماره 2، پاییز، صفحه 1-12، (1390).
28. Bezz G, Gelott G, “A novel sol gel technique for hydroxyapatite preparation”, Material Chemistry and Physics, Vol. 78, pp. 816-824, (2003).
29. Shiha W.-J, Chena Y.-F, Wang M.-C, Hona M.-H, “Crystal growth and morphology of the nano-sized hydroxyapatite powders from CaHPO4.2H2O and CaCO3 by hydrolysis method”, J. of Crystal Growth, Vol. 270, pp. 211-218, (2004).
30. Hsieh M.-F, Perng L.H, Chin T.-S, Perng H.-G, “Phase purity of sol-gel derived hydroxyapatite ceramic”, Biomaterials, Vol. 21, pp. 2601-2607, (2001).
31. Eshtiagh-Hosseini H, Housaindokht M.R, Chahkandi M, “Effects of parameters of sol-gel process on the phase evolution of soil-gel derived hydroxyapatite”, Material Chemistry and Physics, Vol. 106, pp. 310-316, (2007).
32. Lioua S.-C, Chena S.-Y, Leeb H.-Y, Bowc J.-S, “Structural characterization of nano-sized calcium deficient apatite powders”, Biomaterials, Vol. 25, pp. 489-196, (2004).
33. Kokubo T, Takadama H, “How useful is SBF in predicting in vivo bone bioactivity?”, Biomaterials, Vol. 27, pp. 2097-2915, (2006).
34. Dorozhkin S.V, Epple M, “Biological and medical significance of calcium phosphates”, Angewandte Chemie International Edition., Vol. 41, pp. 3130-46, (2002).
35. Roeder R.K, Converse G.L, Kane R.J, Yue W, “Hydroxyapatite-reinforced polymer biocomposites for synthetic bone substitutes” The Journal of The Minerals, Metals & Materials Society., Vol. 60, pp. 38-45, (2008).
36. Stevens M.M, “Biomaterials for bone tissue engineering”, Materials Today, Vol. 11, pp. 18-25, (2008).
37. Anderson J.M, Shive M.S, “Biodegradation and biocompatibility of PLA and PLGA microspheres”, Advanced Drug Delivery Reviews ., Vol. 28, pp. 5-24, (1997).
38. Ghannam A, “Bone reconstruction: from bioceramics to tissue engineering”, Expert Review of Medical Devices, Vol. 2, pp. 87-102, (2005).
39. Vallet-Regi M, Gonzalez-Calbet J.M, “Calcium phosphates as substitution of bone tissues”, Progress in Solid State Chemistry., Vol. 32, pp. 1-31, (2004).
40. Dorozhkin S.V, “Calcium orthophosphates”, journal of materials Science., Vol. 42, pp. 1061-95, (2007).
41. Cullity B.D, “Elements of X-ray diffraction”, 2nd ed., Addison-Wesley publishing, (1977).
42. Muller F.A, Helebrant A, Strand J, Griel P, “Biomimetic apatite formation chemically treated titanium”, Biomaterials, Vol. 25, pp. 1187, (2004)
43. Xingdong Z, Pin Z, Jianguo Z, Weiqun C, Choung W, “A study of hydroxyapatite ceramics and its osteogenesis in bioceramics and the human body”, Elsevier applied science, London, Vol. 7, pp. 1287, (2004).
CAPTCHA Image