بررسی رفتار خوردگی ایمپلنت Ti-6Al-4V پوشش داده شده با نانولایه تانتالوم برای کاربردهای پزشکی

نوع مقاله : علمی و پژوهشی

نویسندگان

1 دانشگاه آزاد واحد یزد و داننشگاه علوم و تحقیقات یزد

2 دانشگاه علوم و تحقیقات یزد

3 دانشگاه آزاد واحد یزد

چکیده

در این تحقیق نانولایه تانتالوم با ضخامت nm200 به روش رسوب فیزیکی بخار (PVD) با پرتو الکترونی بر روی سطح زیرلایه Ti-6Al-4V به منظور بهبود خواص سطحی و خوردگی پوشش داده شد. میزان سختی و زبری سطح نمونه های بدون پوشش (Ti-6Al-4V) و نمونه های با پوشش تانتالوم (Ti-6Al-4V/Ta) تحت ارزیابی قرار گرفتند. سختی و زبری سطح نمونه ها پس از پوشش دهی نسبت به نمونه شاهد
(Ti-6Al-4V) به ترتیب از HV345 به HV371 و از µm055/0 به µm107/0 افزایش یافت. همچنین با انجام آزمون خوردگی در محلول فیزیولوژیکی هنک مشاهده گردید که چگالی جریان خوردگی در نمونه های Ti-6Al-4V/Ta در مقایسه با نمونه شاهد از μA/cm^2 9/1 به μA/cm^2 7/0 کاهش می یابد که بیانگر بهبود قابل توجه مقاومت به خوردگی تا دو برابر می باشد. پس از آزمون خوردگی با بررسی میزان رهایش یون های V، Al و Ti، غلظت عناصر آزاد شده پس از پوشش دهی به نصف میزان آن ها در قبل از پوشش دهی کاهش می یابد. نهایتاً، آزمون های پراش اشعه ایکس(XRD)، بررسی های میکروسکوپ الکترونی روبشی (SEM) و آنالیز عنصری (EDS) به ترتیب برای شناسایی فازها، بررسی مورفولوژی و تعیین در صد عناصر نمونه ها انجام گردید. نتایج نشان دادند که آلیاژ Ti-6Al-4V پوشش داده شده با تانتالوم با توجه به مقاومت خوردگی و خواص مکانیکی عالی گزینه مناسبی برای کاربرد در ایمپلنت های دندانپزشکی و ارتوپدی می باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Corrosion Behavior of Ti-6Al-4V Implant Coated with a Tantalum Nanolayer for Medical Applications

نویسندگان [English]

  • mahboobeh mahmoodi 1
  • Peyman Mahmoodi Hashemi 2
  • Arman Zare Bidaki 3
1 Yazd Branch, Islamic Azad University, Yazd, Iran.
2 Yazd Branch, Islamic Azad University, Yazd, Iran
3 Yazd Branch, Islamic Azad University, Yazd, Iran.
چکیده [English]

In this study, Ti-6A1-4V alloy was coated with a 200 nm thick tantalum nanolayer using physical vapor deposition method with electron beam in order to improve its surface and corrosion properties. The surface hardness and roughness of the control sample (Ti-6A1-4V) and those with tantalum coating (Ti-6Al-4V/Ta) were assessed. After coating, the surface hardness and roughness of the samples increased from 345 HV to 371 HV and from 0.055 µm to 0.107 µm, respectively. Moreover, the corrosion test in Hank's solution revealed that the corrosion current density of Ti-6Al-4V/Ta decreased from 1.9 µA/cm2 vs. 0.7 µA/cm2 for control sample. Following the corrosion test, the release rate of V, Al and Ti ions was examined. The results showed that the concentration of the released elements was halved after coating. Finally, X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray analysis (EDS) were conducted to determine the phases, microstructures, and percentage of elements in the samples, respectively. The test results indicated that tantalum-coated Ti-6A1-4V alloy has desirable corrosion resistance and excellent mechanical properties and can thus be employed in dental and orthopedic implants.

کلیدواژه‌ها [English]

  • Tantalum
  • Ti-6A1-4V
  • Electron Beam
  • Physical Vapor Deposition
  • Corrosion Resistance
  • Biocompatibility
  • Coating
1. Arnould, C., Denayer, J., Planckaert, M., Delhalle, J., and Mekhalif, Z., "Bilayers coating on titanium surface: The impact on the hydroxyapatite initiation", Journal of Colloid and Interface Science., Vol.341, pp. 75-82, (2010).
2. Aubry, D., Volcke, C., Arnould, C., Humbert, C., Thiry, P.A., Delhalle, J., and Mekhalif, Z., "Molecular functionalization of tantalum oxide surface towards development of apatite growth", Applied Surface Science., Vol.255, pp. 4765-4772, (2009).
3. Geetha, M., Singh, A.K., Asokamani, R., and Gogia, A.K., "Ti based biomaterials, the ultimate choice for orthopaedic implants – A review", Progress in Materials Science., Vol.54, pp. 397-425, (2009).
4. Heimann, R.B., "Structure, properties, and biomedical performance of osteoconductive bioceramic coatings", Surface and Coatings Technology., Vol.233, pp. 27-38, (2013).
5. Liu, X., Chu, P.K., and Ding, C., "Surface nano-functionalization of biomaterials", Materials Science and Engineering: R: Reports., Vol.70, pp. 275-302, (2010).
6. Minagar, S., Berndt, C.C., Wang, J., Ivanova, E., and Wen, C., "A review of the application of anodization for the fabrication of nanotubes on metal implant surfaces", Acta Biomaterialia., Vol.8, pp. 2875-2888, (2012).
7. Arnould, C., Koranyi, T.I., Delhalle, J., and Mekhalif, Z., "Fabrication of tantalum oxide/carbon nanotubes thin film composite on titanium substrate", Journal of Colloid and Interface Science., Vol.344, pp. 390-394, (2010).
8. Naahidi, S., Jafari, M., Edalat, F., Raymond, K., Khademhosseini, A., and Chen, P., "Biocompatibility of engineered nanoparticles for drug delivery", Journal of Controlled Release., Vol.166, pp. 182-194, (2013).
9. Purnama, A., Hermawan, H., Couet, J., and Mantovani, D., "Assessing the biocompatibility of degradable metallic materials: State-of-the-art and focus on the potential of genetic regulation", Acta Biomaterialia., Vol.6, pp. 1800-1807, (2010).
10. Balla, V.K., Bodhak, S., Bose, S., and Bandyopadhyay, A., "Porous tantalum structures for bone implants: Fabrication, mechanical and in vitro biological properties", Acta Biomaterialia., Vol.6, pp. 3349-3359, (2010).
11. Kalmodia, S., Goenka, S., Laha, T., Lahiri, D., Basu, B., and Balani, K., "Microstructure, mechanical properties, and in vitro biocompatibility of spark plasma sintered hydroxyapatite–aluminum oxide–carbon nanotube composite", Materials Science and Engineering: C., Vol.30, pp. 1162-1169, (2010).
12. Kwok, C.T., Wong, P.K., Cheng, F.T., and Man, H.C., "Characterization and corrosion behavior of hydroxyapatite coatings on Ti6Al4V fabricated by electrophoretic deposition", Applied Surface Science., Vol.255, pp. 6736-6744, (2009).
13. Wu, S., Liu, X., Yeung, K.W.K., Guo, H., Li, P., Hu, T., Chung, C.Y., and Chu, P.K., "Surface nano-architectures and their effects on the mechanical properties and corrosion behavior of Ti-based orthopedic implants", Surface and Coatings Technology., Vol.233, pp. 13-26, (2013).
14. Okazaki, Y., and Gotoh, E., "Metal release from stainless steel, Co–Cr–Mo–Ni–Fe and Ni–Ti alloys in vascular implants", Corrosion Science., Vol.50, pp. 3429-3438, (2008).
15. Choe, H.-C., Saji, V.S., and Ko, Y.-M., "Mechanical properties and corrosion resistance of low rigidity quaternary titanium alloy for biomedical applications", Transactions of Nonferrous Metals Society of China., Vol.19, pp. 862-865, (2009).
16. Arnould, C., Volcke, C., Lamarque, C., Thiry, P.A., Delhalle, J., and Mekhalif, Z., "Titanium modified with layer-by-layer sol–gel tantalum oxide and an organodiphosphonic acid: A coating for hydroxyapatite growth", Journal of Colloid and Interface Science., Vol.336, pp. 497-503, (2009).
17. Maho, A., Detriche, S., Delhalle, J., and Mekhalif, Z., "Sol–gel synthesis of tantalum oxide and phosphonic acid-modified carbon nanotubes composite coatings on titanium surfaces", Materials Science and Engineering: C., Vol.33, pp. 2686-2697, (2013).
18. Leng, Y.X., Chen, J.Y., Yang, P., Sun, H., Wang, J., and Huang, N., "The biocompatibility of the tantalum and tantalum oxide films synthesized by pulse metal vacuum arc source deposition", Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms., Vol.242, pp. 30-32, (2006).
19. Miyazaki, T., Kim, H.-M., Kokubo, T., Ohtsuki, C., Kato, H., and Nakamura, T., "Mechanism of bonelike apatite formation on bioactive tantalum metal in a simulated body fluid", Biomaterials., Vol.23, pp. 827-832, (2002). 23, 827-832.
20. Cheng, Y., Cai, W., Zheng, Y.F., Li, H.T., and Zhao, L.C., "Surface characterization and immersion tests of TiNi alloy coated with Ta", Surface and Coatings Technology., Vol.190, pp. 428-433, (2005).
21. Singh, M., Srivastava, S., Agarwal, S., Kumar, S., and Vijay, Y.K., "Optical properties of d.c. magneto sputtered tantalum and titanium nanostructure thin film metal hydrides", Bull Mater Sci., Vol.33, pp. 569-573, (2010).
22. Kaufmann, D., Mönig, R., Volkert, C.A., and Kraft, O., "Size dependent mechanical behaviour of tantalum", International Journal of Plasticity., Vol.27, pp. 470-478, (2011).
23. Macionczyk, F., Gerold, B., and Thull, R., "Repassivating tantalum/tantalum oxide surface modification on stainless steel implants" Surface and Coatings Technology., Vol.142-144, pp. 1084-1087, (2001).
24. Leng, Y.X., Sun, H., Yang, P., Chen, J.Y., Wang, J., Wan, G.J., Huang, N., Tian, X.B., Wang, L.P., and Chu, P.K., "Biomedical properties of tantalum nitride films synthesized by reactive magnetron sputtering", Thin Solid Films., Vol.398-399, pp. 471-475, (2001).
25. Ligot, S., Godfroid, T., Music, D., Bousser, E., Schneider, J.M., and Snyders, R., "Tantalum-doped hydroxyapatite thin films: Synthesis and characterization", Acta Materialia., Vol.60, pp. 3435-3443, (2012).
26. Vutova, K., Vassileva, V., Koleva, E., Georgieva, E., Mladenov, G., Mollov, D., and Kardjiev, M., "Investigation of electron beam melting and refining of titanium and tantalum scrap", Journal of Materials Processing Technology., Vol.210, pp. 1089-1094, (2010).
27. Meng, F., Li, Z., and Liu, X., "Synthesis of tantalum thin films on titanium by plasma immersion ion implantation and deposition", Surface and Coatings Technology., Vol.229, pp. 205-209, (2013).
28. Hemmersam, A.G., Foss, M., Chevallier, J., and Besenbacher, F., "Adsorption of fibrinogen on tantalum oxide, titanium oxide and gold studied by the QCM-D technique", Colloids and Surfaces B: Biointerfaces., Vol.43, pp. 208-215, (2005).
29. Matsuno, H., Yokoyama, A., Watari, F., Uo, M., and Kawasaki, T., "Biocompatibility and osteogenesis of refractory metal implants, titanium, hafnium, niobium, tantalum and rhenium", Biomaterials., Vol.22, pp. 1253-1262, (2001).
30. Bermúdez, M.-D., Carrion, F.J., Martinez-Nicolas, G., and Lopez, R., "Erosion–corrosion of stainless steels, titanium, tantalum and zirconium", Wear., Vol.258, pp. 693-700, (2005).
31. Li, Y., Zhang, S., Guo, L., Dong, M., Liu, B., and Mamdouh, W., "Collagen coated tantalum substrate for cell proliferation", Colloids and Surfaces B: Biointerfaces., Vol.95, pp. 10-15, (2012).
32. Chaneliere, C., Autran, J.L., Devine, R.A.B., and Balland, B., "Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications", Materials Science and Engineering: R: Reports., Vol.22, pp. 269-322, (1998).
33. David, B., Pizúrova, N., Schneeweiss, O., Klementova, M., Šantava, E., Dumitrache, F., Alexandrescu, R., and Morjan, I., "Magnetic properties of nanometric Fe-based particles obtained by laser-driven pyrolysis", Journal of Physics and Chemistry of Solids., Vol.68, pp. 1152-1156, (2007).
34. Choubey, A., Basu, B., and Balasubramaniam, R., "Electrochemical behavior of intermetallic Ti3Al-based alloys in simulated human body fluid environment", Intermetallics., Vol.12, pp. 679-682, (2004).
35. Johnson, C. A., Ruud, J. A., Bruce, R., and Wortman, D., "Relationships between residual stress, microstructure and mechanical properties of electron beam–physical vapor deposition thermal barrier coatings", Surface and Coatings Technology., Vol.108–109, pp. 80-85, (1998).
36. Park, K.Y., Kim, H.J., and Suh, Y.J., "Preparation of tantalum nanopowders through hydrogen reduction of TaCl5 vapor. Powder Technology"., Vol.172, pp. 144-148, (2007).
37. Sun, Y. S., Chang, J.-H., and Huang, H.-H., "Corrosion resistance and biocompatibility of titanium surface coated with amorphous tantalum pentoxide", Thin Solid Films., Vol.528, pp. 130-135, (2013).
38. Reiners, G., "ASM Handbook, Volume 5, Surface Engineering". 1051 Seiten, 106 Artikel, 141 Autoren, ASM International Materials Park, OH 44073-0002, USA, December 1994, £ 126.00 (ASM Members £ 95.00), ISBN 0-87170-384-X. In Europa zu beziehen durch: American Technical Publishers Ltd., 27–29 Knowl Piece, Wilbury Way, Hitchin Herts, SG4 OSX, England. Materials and Corrosion., (1996).
39. Nageswara Rao, G. V. S., Hanumantha Rao, M., and Appa Rao, B. V., "Electrochemical characterization of biomedical titanium alloy Ti-35Nb-7Zr-5Ta", International Journal of Advanced Engineering Technology., Vol.3, pp. 217-222, (2012).
CAPTCHA Image