توسعۀ مدل سینتیکی برای پیش‌بینی رفتار انحلال مولیبدنیت فعال‌سازی‌‌‌شده به‌روش مکانیکی

نوع مقاله : علمی و پژوهشی

نویسندگان

1 مهندسی متالورژی و مواد، دانشکده مهندسی، دانشگاه فردوسی مشهد.

2 دانشگاه صنعتی بیرجند

3 گروه مهندسی متالورژی و مواد، دانشکده مهندسی، دانشگاه فردوسی مشهد.

4 امور تحقیق و توسعه، مجتمع مس سرچشمه کرمان

چکیده

در این پژوهش، سینتیک واکنش انحلال کنسانتره مولیبدنیت فعال‌سازی‌‌‌شده به‌روش مکانیکی بررسی می‌شود. ابتدا کنسانترۀ مدنظر در 2حالت حضور و عدم حضور آلومینا به‌عنوان افزودنی خنثی آسیاکاری شد و پس از آن آزمون‌های انحلال در اسیدنیتریک انجام شد. به‌منظور بررسی سینتیک انحلال اصلاحاتی در چند مرحله روی مدل معمول هسته کوچک‌شونده انجام شد. در هر مرحله مدل به‌دست‌آمده برازش بهتری بر داده‌ها نشان داد و در پایان مدلی جامع به‌دست آمد که اثر عوامل مؤثر بر میزان انحلال مولیبدنیت آسیاکاری‌شده را در خود دارد. مقادیر انرژی فعال‌سازی‌‌ محاسبه‌شده نشان داد که در عدم حضور افزودنی، میزان اثر فعال‌سازی‌‌ مکانیکی بر مولیبدنیت بیشتر است و حداقل میزان کاهش در مقدار انرژی فعال‌سازی‌‌ انحلال برابر 20درصد و 56درصد به‌ترتیب برای نمونه‌های آسیاکاری‌شده به‌مدت 4 و 24ساعت به‌دست آمد. درحالی‌که حداقل میزان کاهش در مقدار انرژی فعال‌سازی‌‌ انحلال برای مولیبدنیت فعال‌سازی‌‌‌شده در حضور آلومینا، حدود 3درصد و 6درصد به‌ترتیب برای نمونه‌های آسیاکاری‌شده به‌مدت 2 و 12ساعت به‌دست آمد.

کلیدواژه‌ها


عنوان مقاله [English]

Development of a Kinetic Model for Predicting the Dissolution Behavior of Activated Molybdenite by Mechanical Activation

نویسندگان [English]

  • Hossein Shalchian 1
  • Hadi Nasiri 2
  • Abolfazl Babakhani 3
  • Masumeh Torabi Parizi 4
1 Department of Materials Science and Metallurgical Engineering, Engineering Faculty, Ferdowsi University of Mashhad.
2 عضو هیات علمی گروه مهندسی مواد و متالورژی
3 Department of Materials Science and Metallurgical Engineering, Engineering Faculty, Ferdowsi University of Mashhad.
4 Research and Development Division, Sarcheshmeh Copper Complex, Kerman, Iran.
چکیده [English]

In this research, leaching kinetic of activated molybdenite was studied. Mechanical activation of molybdenite concentrate was carried out at different conditions of milling and presence of alumina. Leaching experiments were performed in nitric acid media. The classic shrinking core model was modified, in order to study the leaching kinetic of activated molybdenite. The model was developed step by step. Finally, a comprehensive model was obtained which contains the effect of important parameters on the leaching rate of activated molybdenite. The calculated values of activation energy revealed that the activated molybdenite without additive is more reactive with the minimum of 20% and 56% reduction in activation energy value after 4 and 24 hours of milling, respectively.  The minimum of 3% and 6% reduction in activation energy value was obtained for the activated molybdenite in presence of alumina after 2 and 12 hours of milling, respectively.

کلیدواژه‌ها [English]

  • Molybdenite
  • Mechanical Activation
  • Leaching
  • Kinetic
  • Modeling
1.    Sebenik, R. F., Burkin, A. R., Dorfler, R. R., Laferty, J. M., Leichtfried, G., Meyer‐Grünow, H., Mitchell, P. C., Vukasovich, M. S., Church, D. A., Van Riper, G. G., "Molybdenum and molybdenum compounds", Ullmann's Encyclopedia of Industrial Chemistry, (2000).
2.    Bafghi, M. S., Emami, A., Zakeri, A., Khaki, J. V., "Effect of mechanical activation on the kinetics of leaching of chalcopyrite in the ferric sulfate media", Iranian Journal of Materials Science & Engineering, Vol. 7, pp. 30-35, (2010).
3.    Ashraf, M., "Hydrometallurgical recovery of molybdenum from Egyptian Qattar molybdenite concentrate", Physicochemical Problems of Mineral Processing, Vol. 47, pp. 105-112, (2011).
4.    Jiang, K., Wang, Y., Zou, X., Zhang, L., Liu, S., "Extraction of molybdenum from molybdenite concentrates with hydrometallurgical processing", Journal of The Minerals, Metals & Materials Society, Vol. 64, pp. 1285-1289, (2012).
5.    Khoshnevisan, A., Yoozbashizadeh, H., Mozammel, M., Sadrnezhaad, S. K., "Kinetics of pressure oxidative leaching of molybdenite concentrate by nitric acid", Hydrometallurgy, Vol. 111, pp. 52-57, (2012).
6.    Antonijević, M., Pacović, N., "Investigation of molybdenite oxidation by sodium dichromate", Minerals Engineering, Vol. 5, pp. 223-233, (1992).
7.    Cao, Z. -f., Zhong, H., Qiu, Z. -h., Liu, G. -y., Zhang, W. -x., "A novel technology for molybdenum extraction from molybdenite concentrate", Hydrometallurgy, Vol. 99, pp. 2-6, (2009).
8.    Abdollahi, H., Shafaei, S., Noaparast, M., Manafi, Z., Aslan, N., "Bio-dissolution of Cu, Mo and Re from molybdenite concentrate using mix mesophilic microorganism in shake flask", Transactions of Nonferrous Metals Society of China, Vol. 23, pp. 219-230, (2013).
9.    Olson, G. J., Clark, T. R., "Bioleaching of molybdenite", Hydrometallurgy, Vol. 93, pp. 10-15, (2008).
10. Zamani, M. A., Hiroyoshi, N., Tsunekawa, M., Vaghar, R., Oliazadeh, M., "Bioleaching of Sarcheshmeh molybdenite concentrate for extraction of rhenium", Hydrometallurgy, Vol. 80, pp. 23-31, (2005).
11.  Hu, H., Chen, Q., Yin, Z., Zhang, P., Guo, G., Gottstein, G., "Structural change of mechanically activated molybdenite and the effect of mechanical activation on molybdenite", Metallurgical and Materials Transactions B, Vol. 35, pp. 1203-1207, (2004).
12.  Ebrahimi-Kahrizsangi, R., Abbasi, M. H., Saidi, A., "Mechanochemical effects on the molybdenite roasting kinetics", Chemical Engineering Journal, Vol. 121, pp. 65-71, (2006).
13.  Kumar, S., Alex, T., Kumar, R., "Mechanical Activation of Solids in Extractive Metallurgy", Research group at NML,(2008).
14. Zhao, Z.W., Li, H. G., Sun, P. M., Li, Y. J., Huo, G. S., "Influence of crystal structure on mechanical activation effect", Transactions of the Nonferrous Metals Society of China, Vol. 13, pp. 188-194, (2003).
15.   رضا ابراهیمی، محمد‌حسن عباسی، علی سعیدی، محمد جمالی، جلیل سلیمانی، «اثر فعال‌سازی‌‌ مکانیکی بر سرعت انحلال مولیبدنیت»، هشتمین کنگره سالانه انجمن مهندسین متالورژی ایران، دانشگاه صنعتی اصفهان، (1383).
16. Hoseinpur, A., Mohammadi Bezanaj, M., Vahdati Khaki, J., "The effect of Al2O3 and CaO presence on the kinetics of mechanochemical reduction of MoS2 by Zn", Journal of Alloys and Compounds, Vol. 587, pp. 646-651, (2014).
17.  Levenspiel, O., Levenspiel, C., "Chemical reaction engineering", Wiley New York etc., (1972).
18.  Brittan, M., "Variable activation energy model for leaching kinetics", International journal of mineral processing, Vol. 2, pp. 321-331, (1975).
19.  Shalchian, H., Vahdati Khaki, J., Babakhani, A., Taglieri, G., De Michelis, I., Daniele, V., Veglio, F., "On the mechanism of molybdenite exfoliation during mechanical milling", Ceramics International, Vol. 43, pp. 12957-12967, (2017).
20.  Prosser, A., "Influence of mineralogical factors on the rates of chemical reaction of minerals", 9th Commonwealth Mineral Metallurgy Congress, (1969).
21.  Shalchian, H., Vahdati Khaki, J., Babakhani, A., De Michelis, I., Veglio, F., Torabi Parizi, M., "An enhanced dissolution rate of molybdenite and variable activation energy", Hydrometallurgy, Vol. 175, pp. 52-63, (2018).
22.  Montgomery, D. C., Runger, G. C., "Applied statistics and probability for engineers", John Wiley & Sons, (2010).
23.  Vizsolyi, A., Peters, E., "Nitric acid leaching of molybdenite concentrates", Hydrometallurgy, Vol. 6, pp. 103-119, (1980).
24.  Wang, D., Wang, Z., Wang, C., Zhou, P., Wu, Z., Liu, Z., "Distorted MoS2 nanostructures: An efficient catalyst for the electrochemical hydrogen evolution reaction", Electrochemistry Communications, Vol. 34, pp. 219-222, (2013).
25.  Ambrosi, A., Chia, X., Sofer, Z., Pumera, M., "Enhancement of electrochemical and catalytic properties of MoS2 through ball-milling", Electrochemistry Communications, Vol. 54, pp. 36-40, (2015).
26.  Beolchini, F., Papini, M.P., Toro, L., Trifoni, M., Vegliò, F., "Acid leaching of manganiferous ores by sucrose: kinetic modelling and related statistical analysis", Minerals Engineering, Vol. 14, pp. 175-184, (2001).
27.  Veglio, F., Trifoni, M., Pagnanelli, F., Toro, L., "Shrinking core model with variable activation energy: a kinetic model of manganiferous ore leaching with sulphuric acid and lactose", Hydrometallurgy, Vol. 60, pp. 167-179, (2001).
CAPTCHA Image