تاثیر عملیات کوئنچ و پارتیشن‌بندی بر ریزساختار و خواص کششی یک فولاد متوسط کربن پرسیلیسیم‌

نوع مقاله : علمی و پژوهشی

نویسندگان

1 مهندسی مکانیک، دانشگاه صنعتی بیرجند، بیرجند

2 مهندسی مواد و متالورژی، دانشگاه صنعتی بیرجند، بیرجند

چکیده

یکی از روشهای کاربردی جهت توسعه فولادهای استحکام بالا با انعطاف‌پذیری مناسب، عملیات حرارتی کوئنچ و پارتیشن‌بندی به منظور ایجاد یک ریزساختار میکروکامپوزیتی (مارتنزیت+آستنیت باقیمانده) است. به کمک این روش می‌توان با هزینه اندک، ترکیبی فوق‌العاده از خواص مکانیکی را در یک فولاد کم آلیاژ بوجود آورد. در پژوهش حاضر، فولاد متوسط کربن پرسیلیسیم 7102/1 با اعمال فرآیندهای کوئنچ و پارتیشن‌بندی مورد مطالعه قرار گرفته است و تاثیر پارامترهای مختلف از جمله دمای کوئنچ (محدوده دمایی 170 الی 230 درجه سانتیگراد) و زمان پارتیشن‌بندی (3 الی 30 دقیقه) روی ریزساختار و خواص کششی بررسی شده است. ریزساختار توسط میکروسکوپ نوری بررسی شده و کسر حجمی آستنیت باقی‌مانده، توسط تکنیک پراش پرتوی ایکس اندازه‌گیری شده است. نتایج بدست آمده نشان می‌دهد که ریزساختار میکروکامپوزیتی پس از عملیات حرارتی بوجود آمده است. افزایش زمان پارتیشن‌بندی باعث کاهش آستنیت باقیمانده و تشکیل رسوبات کاربیدی می‌گردد همچنین با افزایش دمای کوئنچ در زمان پارتیشن بندی 3 دقیقه ، درصد آستنیت باقی‌مانده و پایدارشده افزایش یافته است. بهترین خواص کششی مربوط به نمونه کوئنچ شده در 170 درجه سانتیگراد و پارتیشن‌بندی شده در 300 درجه سانتیگراد به مدت 8 دقیقه با استحکام کششی 1997 مگاپاسکال، استحکام تسلیم 1730 مگاپاسکال، ازدیاد طول 3/10 درصد و میزان کاهش سطح مقطع 48 درصد می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of quenching and partitioning process on the microstructure and tensile properties of medium carbon high silicon steel

نویسندگان [English]

  • Aliakbar Abedini 1
  • Habibollah Rastegary 2
  • syyed mohammad emam 1
1 Department of Mechanical Engineering, Birjand University of Technology, Birjand, Iran.
2 Department of Materials and Metallurgy Engineering, Birjand University of Technology, Birjand, Iran.
چکیده [English]

One of the practical methods for developing high strength steels with suitable ductility is quenching and partitioning process to create a micro-composite microstructure (martensite + residual austenite). In this regard, a good combination of mechanical properties can be produced in a low-alloy steel with a low cost. In the present study, a medium silicon carbon steel 1.7102 was studied by applying quenching and partitioning processes. For this purpose, the effect of quenching temperature (temperature range 170 to 230 °C) and partitioning time (3 to 30 min) were investigated on the microstructure and tensile properties. Microstructural observation was carried out by light microscopy and the volume fraction of the retained austenite was determined using the X-ray diffraction technique. The results show that quenched and partitioned microstructure contains micro-composite features. Moreover, the amount of retained austenite was reduced by increasing the partitioning time followed by precipitation of carbide phase. The best tensile properties were obtained for the specimen quenched at 170 ° C and partitioned at 300 ° C for 8 minutes with a tensile strength of 1997 MPa, yield strength of 1730 MPa, elongation of 10.3% and reduction area of 48%.

کلیدواژه‌ها [English]

  • Heat treatment
  • quenching and partitioning
  • medium carbon high silicon steel
  • mechanical properties
  • microstructure
  1. Connolly, D. S., Kohar, C. P., Muhammad, W., Hector Jr, L. G., Mishra, R. K., & Inal, K., "A coupled thermomechanical crystal plasticity model applied to Quenched and Partitioned steel", International Journal of Plasticity, Vol. 133, p. 102757,‏ (2020).
  2. Härtel, M., Wilke, A., Dieck, S., Landgraf, P., Grund, T., Lampke, T., ... & Wappler, S., "On the Q&P Potential of a Commercial Spring Steel", Metals, Vol. 11, No. 10, p. 1612, (2021).‏
  3. Speer, J. G., De Moor, E., Findley, K. O., Matlock, D. K., De Cooman, B. C., & Edmonds, D. V., "Analysis of microstructure evolution in quenching and partitioning automotive sheet steel", Metallurgical and Materials Transactions A, Vol. 42, No. 12, pp. 3591-3601,‏ (2011).
  4. Franceschi, M., Pezzato, L., Gennari, C., Fabrizi, A., Polyakova, M., Konstantinov, D., ... & Dabalà, M., "Effect of intercritical annealing and austempering on the microstructure and mechanical properties of a high silicon manganese steel", Metals, Vol. 10, No. 11, p. 1448, (2020)‏.
  5. Hidalgo, J., Celada-Casero, C., & Santofimia, M. J., "Fracture mechanisms and microstructure in a medium Mn quenching and partitioning steel exhibiting macrosegregation", Materials Science and Engineering: A, Vol. 754, pp. 766-777,‏ (2019).
  6. Sabirov, I., Santofimia, M. J., & Petrov, R. H., "Advanced High-Strength Steels by Quenching and Partitioning", Metals, Vol. 11, No. 9, p. 1419, (2021).
  7. Speer, J., Matlock, D. K., De Cooman, B. C., & Schroth, J. G., "Carbon partitioning into austenite after martensite transformation", Acta materialia, Vol. 51, No. 9, pp. 2611-2622, (2003).
  8. Jirková, H., Mašek, B., Wagner, M. F. X., Langmajerová, D., Kučerová, L., Treml, R., & Kiener, D., "Influence of metastable retained austenite on macro and micromechanical properties of steel processed by the Q&P process", Journal of Alloys and Compounds, Vol. 615, pp. 163-168, (2014).
  9. Yu, J. X., Wang, L. Y., Chi, R. A., Zhang, Y. F., Xu, Z. G., & Guo, J., "Competitive adsorption of Pb2+ and Cd2+ on magnetic modified sugarcane bagasse prepared by two simple steps", Applied Surface Science, Vol. 268, pp. 163-170, (2013).
  10. Liao, S., "An optimal homotopy-analysis approach for strongly nonlinear differential equations", Communications in Nonlinear Science and Numerical Simulation, Vol. 15, No. 8, pp. 2003-2016, (2010).
  11. Wang, X. D., Zhong, N., Rong, Y. H., Hsu, T. Y., & Wang, L., "Novel ultrahigh-strength nanolath martensitic steel by quenching–partitioning–tempering process", Journal of Materials Research, Vol. 24, No. 1, pp. 260-267, (2009).
  12. Zurnadzhy, V. I., Efremenko, V. G., Wu, K. M., Azarkhov, A. Y., Chabak, Y. G., Greshta, V. L., ... & Pomazkov, M. V., "Effects of stress relief tempering on microstructure and tensile/impact behavior of quenched and partitioned commercial spring steel", Materials Science and Engineering: A, Vol. 745, pp. 307-318, (2019).‏
  13. Meigui, O., Chunlin, Y., Jie, Z., Qifan, X., & Huina, Q., "Influence of Cr content and Q–P–T process on the microstructure and properties of cold-coiled spring steel", Journal of Alloys and Compounds, Vol. 697, pp. 43-54, (2017).
  14. Zhou, W., Sun, Y., Wang, Q., & Ding, L., "Effect of quenching and partitioning process to low-alloy wear resistant steel", Journal of Materials Research, Vol. 31, No. 5, pp. 663-669, (2016).               
  15. Forouzan, F., Guitar, M. A., Vuorinen, E., & Mücklich, F., "Effect of carbon partitioning, carbide precipitation, and grain size on brittle fracture of ultra-high-strength, low-carbon steel after welding by a quenching and partitioning process", Metals, Vol. 8, No. 10, p. 747, (2018).
  16. 16. Di Schino, A., Emilio Di Nunzio, P., & Maria Cabrera, J., "Effect of quenching & partitioning process on a low carbon steel",Advanced Materials Letters, Vol. 8, No. 5, pp. 641-644, (2017).
  17. Bagliani, E. P., Santofimia, M. J., Zhao, L., Sietsma, J., & Anelli, E., "Microstructure, tensile and toughness properties after quenching and partitioning treatments of a medium-carbon steel", Materials Science and Engineering: A, Vol. 559, pp. 486-495, (2013).
  18. Lu, J., Yu, H., Kang, P., Duan, X., & Song, C., "Study of microstructure, mechanical properties and impact-abrasive wear behavior of medium-carbon steel treated by quenching and partitioning (Q&P) process",Wear,Vol. 414, pp. 21-30, (2018).
  19. Wang, Z., & Huang, M., "Improving Hydrogen Embrittlement Resistance of Hot-Stamped 1500 MPa Steel Parts That Have Undergone a Q&P Treatment by the Design of Retained Austenite and Martensite Matrix", Metals, Vol. 10, No. 12, p. 1585, (2020).
  20. Arribas, M., Gutiérrez, T., Del Molino, E., Arlazarov, A., Diego-Calderón, D., Martin, D., ... & Santofimia, M. J., "Austenite reverse transformation in a Q&P route of Mn and Ni added steels", Metals, Vol. 10, No. 7, p. 862, (2020).‏
  21. Aoued, S., Danoix, F., Allain, S. Y., Gaudez, S., Geandier, G., Hell, J. C., ... & Gouné, M., "Microstructure evolution and competitive reactions during quenching and partitioning of a model fe–c–mn–si alloy", Metals, Vol. 10, No. 1, p. 137, (2020).
  22. Vercruysse, F., Celada-Casero, C., Linke, B. M., Verleysen, P., & Petrov, R. H., "Temperature dependence of the static and dynamic behaviour in a quenching and partitioning processed low-si steel", Metals, Vol. 10, No. 4, p. 509, (2020).
  23. Jatczak, C. F., "Retained austenite and its measurement by X-ray diffraction. SAE Transactions, Vol. 89, pp. 1657-1676, (1980).‏
  24. Santofimia, M. J., Zhao, L., Petrov, R., Kwakernaak, C., Sloof, W. G., & Sietsma, J., "Microstructural development during the quenching and partitioning process in a newly designed low-carbon steel", Acta Materialia, Vol. 59, No. 15, pp. 6059-6068, (2011).
  25. Jirková, H., Kučerová, L., & Mašek, B., "Effect of Quenching and Partitioning Temperatures in the QP Process on the Properties of AHSS with Various Amounts of Manganese and Silicon", In Materials Science Forum,Vol. 706, pp. 2734-2739, Trans Tech Publications Ltd, (2012).
  26. Edmonds, D. V., He, K., Rizzo, F. C., De Cooman, B. C., Matlock, D. K., & Speer, J. G., "Quenching and partitioning martensite—A novel steel heat treatment",Materials Science and Engineering: A, Vol. 438, pp. 25-34, (2006).
  27. Clarke, A. J., Speer, J. G., Miller, M. K., Hackenberg, R. E., Edmonds, D. V., Matlock, D. K., ... & De Moor, E., "Carbon partitioning to austenite from martensite or bainite during the quench and partition (Q&P) process: A critical assessment", Acta materialia, Vol. 56, No. 1, pp. 16-22, (2008).
  28. Zhou, S., Zhang, K., Wang, Y., Gu, J. F., & Rong, Y. H., "High strength-elongation product of Nb-microalloyed low-carbon steel by a novel quenching–partitioning–tempering process", Materials Science and Engineering: A, Vol. 528, No. 27, pp. 8006-8012, (2011).
  29. Wang, C., & HUI, W., "Study on the martensite in low carbon CrNi3Si2MoV steel treated by Q&P process", Acta Metall Sin, Vol. 47, No. 6, pp. 720-726, (2011).
CAPTCHA Image