بهینه‌سازی پارامترهای مؤثر بر اکسیداسیون سرامیک دی بوراید زیرکونیوم

نوع مقاله : علمی و پژوهشی

نویسندگان

دانشگاه آزاد واحد اهواز

چکیده

در این پژوهش به بررسی پارامترهای مؤثر بر اکسیداسیون سرامیک دی بوراید زیرکونیوم پرداخته می‌شود. دما، زمان و فشار به همراه افزودنی‌های مختلف (SiC, Cf, MoSi2, HfB2  ZrC) مورد بررسی قرار گرفتند. طراحی آزمایش به روش تاگوچی انجام شد. فرآیند اکسیداسیون در دمای 1600 درجۀ سانتی‌گراد در کوره باکسی به مدّت یک ساعت انجام شد. مشخص شد که HfB2 سبب بهبود مقاومت به اکسیداسیون می‌شود. نتیجه‌گیری شد که با افزایش میزان ZrC، مقاومت به اکسیداسیون کاهش می‌یابد. SiC با تشکیل لایه بروسیلیکاتی سبب بهبود مقاومت به اکسیداسیون می‌شود. در میان پارامترهای SPS، دما مؤثرترین پارامتر بود

کلیدواژه‌ها


عنوان مقاله [English]

Optimization of effective parameters on oxidation resistance of ZrB2 ceramics

نویسندگان [English]

  • zohre balak
  • mahdi azizieh
  • Hosein Kafashan
islamic azad university, ahvaz,branch
چکیده [English]

In this research, the effective parameters on the oxidation of ZrB2 ceramics were investigated. Temperature, time and pressure in addition of different additives (SiC, Cf, MoSi2, HfB2 and ZrC) were investigated. Taguchi method was applied for experimental design. Oxidation test was conducted on box furnace at 1600 C for one hour. It was cleared that the HfB2 resulted to better oxidation resistance. At the presence of ZrC, oxidation resistance was damaged. SiC improves the oxidation resistance by borosilicate layer formation. Finally, among the SPS parameters, temperature is the most.

کلیدواژه‌ها [English]

  • ZrB2-SiC
  • Spark plasma sintering
  • oxidation resistance
M. Shahedi, Asl, M. Ghassemi Kakroudi, B. Nayebi, H. Nasiri,, Taguchi analysis on the effect of hot pressing parameters on density and hardness of zirconium diboride, international Journal of Refractory Metals and Hard Materials, Vol. 50, No. 5, pp. 313-320, (2015).
2. M. R. George, "Studies of ultra-high temperature ceramic composite components: synthesis and characterization of HfOxCy and Si oxidation in atomic oxygen containing environments", P.H.D Thesis in ceramic engineering, Vander bilt unversity, Nashville Tennessee, (2008).
3. W. M. Guo, G. J. Zhang, Oxidation resistance and strength retention of ZrB2–SiC ceramics, Journal of the European Ceramic Society, (2010). Vol. 30, No. 3, pp. 2387-2395
4. P. Sarin, P.E. Driemeyer, R.P. Haggerty, D.-K. Kim, J.L. Bell, Z.D. Apostolov, W.M. Kriven, In situ studies of oxidation of ZrB2 and ZrB2-SiC composites at high temperatures, Journal of the European Ceramic Society, 30, 2375–2386, Vol. 30, No. 11, pp. 2375-2386, (2010).
5. A. Rezaie, G. William, W. G. Fahrenholtz, G. E. Hilmas, Evolution of structure during the oxidation of zirconium diboride-silicon carbide in air up to 1500°C, Journal of the European Ceramic Society, Vol. 33, No. 6 pp. 2495-2501, (2007).
6. J. Han, P. Hu, X. Zhang, S. Meng, W. Han, Oxidation-resistant ZrB2–SiC composites at 2200° C, Composites Science and Technology, Vol. 68, No. 3, pp.799-806, (2008).
7. Z. Balak, M. Zakeri, M. Rahimipour, E. Salahi, Taguchi design and hardness optimization of ZrB2-based composites reinforced with chopped carbon fiber and different additives and prepared by SPS, Journal of Alloys and Compounds, Vol. 639, No. 9, pp. 617-625, (2015).
8. Z. balak, M. Zakeri., Application of Taguchi L32 orthogonal design to optimize flexural strength of ZrB2-based composites prepared by spark plasma sintering, Int. Journal of Refractory Metals and Hard Materials, 55, 58–67, Vol. 55, No. 2, pp. 58-67, (2016).
9. F. Monteverde., Corrosion Science; 47, 2020–33, (2005).
10. J. Li, T.J. Lenosky, C.J, Först, S.Yip, Thermochemical and Mechanical Stabilities of the Oxide Scale of ZrB2 + SiC and Oxygen Transport Mechanisms, J Am Ceram Soc., Vol. 91, No. 5 pp. 1475-80, (2008).
11. A. Rezaie, W. G. Fahrenholtz, G. E. Hilmas, Oxidation of zirconium diboride–silicon carbide at 1500° C at a low partial pressure of oxygen, J Am Ceram Soc., Vol. 89, No. 10, pp. 3240-5, (2006).
12. F. Monteverde, A. Bellosi, Beneficial effects of AlN as sintering aid on microstructure and mechanical properties of hot-pressed ZrB2, J Electrochem Soc, 150, 552–559, Vol. 150, No. 11, pp. 552-559, (2003).
13. A. Rezaie, W. G. Fahrenholtz, G. E. Hilmas. Effect of hot pressing time and temperature on the microstructure and mechanical properties of ZrB2–SiC, Journal of Materials Science, Vol. 42, No. 8, pp. 2735-2744, (2007).
14. W. G. Fahrenholtz, Thermodynamic Analysis of ZrB2–SiC Oxidation: Formation of a SiC‐Depleted Region, J Am Ceram Soc, Vol. 90, No. 1 pp. 143-8, (2007).
15. P. A. Williams, R. Sakidja, J. H. Perepezko, P. Ritt, Oxidation of ZrB2–SiC ultra-high temperature composites over a wide range of SiC content, Journal of the European Ceramic Society, Vol. 32, No. 14, pp. 3875-3883, (2012).
16. J. D. Buckley, D. D. Edie, carbon-carbon materials and composites, Published in the United States of America by Noyes Publications Mill Road, Park Ridge, New Jersey 07656, 238, (1993).
17. Z. Wang, Y. Niu, C. Hu, H. Li, Y. Zeng, X. Zheng, M. Ren, J. Sun, High temperature oxidation resistance of metal silicide incorporated ZrB2 composite coatings prepared by vacuum plasma spray, Ceramics International, Vol. 41, No. 10, pp. 14868-14875, (2015).
18. M. Mallik, K.K. Ray, R. Mitra, Oxidation behavior of hot pressed ZrB2–SiC and HfB2–SiC composites, Journal of the European Ceramic Society, Vol. 31, No. 1, pp. 199-215, (2011).
19. W.M. Guo, X.J.Zhou, G.J.Zhang, Y.M.Kan, Y.G.Li, P.L.Wang, “Effect of Si and Zr Additions on Oxidation Resistance of Hot-pressed ZrB2-SiC Composites with Polycarbosilane as a Precursor at 1500 Degrees C,” J. Alloy. Compd., Vol. 471, No. 5, pp. 153-156, (2009).
20. D.W. Ni, G.J. Zhang, F.F. Xu, W.M. Guo, Initial stage of oxidation process and microstructure analysis of HfB2-20 vol.% SiC composite at 1500oC, Scr.Mater., Vol. 64, No. 7, pp. 617-620, (2011).
21. Hu-Lin Liu, Ji-Xuan Liua, Hai-Tao Liua, Guo-Jun Zhang, Changed oxidation behavior of ZrB2–SiC ceramics with the addition of ZrC, Ceramics International, Vol. 41, No. 6, pp. 8247-8251, (2015).
CAPTCHA Image