بررسی اثر نورد گرم ثانویه بر رفتار داکتیلیته گرم آلیاژ تیتانیوم IMI834

نوع مقاله : علمی و پژوهشی

نویسندگان

دانشگاه صنعتی مالک اشتر

چکیده

در این پژوهش داکتیلیته گرم آلیاژ IMI834 پس از نورد گرم اولیه و ثانویه در دماهای 800-1000 درجه سانتیگراد و نرخ کرنش 0.1 بر ثانیه مورد ارزیابی قرار گرفت. نتایج بررسی ها نشان داد که این آلیاژ در حالت نورد گرم اولیه در دماهای 800-900 درجه سانتیگراد، داکتیلیته اندکی دارد و در دمای 850 درجه سانتیگراد افت داکتیلیته گرم مشاهده می شود. پس از نورد گرم ثانویه، در کلیه شرایط، داکتیلیته افزایش یافته و همچنین هیچگونه افت داکتیلیته مشاهده نشد. بویژه در دمای 900 درجه سانتیگراد، داکتیلیته گرم از 31% در حالت نورد گرم اولیه به 95% در حالت نورد گرم ثانویه افزایش یافت.

کلیدواژه‌ها


عنوان مقاله [English]

The Effect of Second Hot Rolling on the Hot Ductility Behavior of IMI834 Alloy

نویسندگان [English]

  • Mohammad Hadi Ghavam
  • Maryam Morakabati
  • Seyed Mahdi Abbasi
  • Hassan Badri
maleke ashtar university
چکیده [English]

The hot ductility of IMI834 alloy in two conditions of first hot rolling and second hot rolling has been studied by conducting tensile tests with a strain rate of 0.1 s−1 and temperature range of 800–1000 °C. In first hot rolling condition, IMI834 alloy showed little hot ductility in the temperature range 800–900 °C and ductility loss occurred at 850 °C. In second hot rolling condition, hot ductility increased at all temperatures and ductility loss is not occurred. Especially at 900 °C, hot ductility increased from 31% in first hot rolling to 95% in second hot rolling.

کلیدواژه‌ها [English]

  • IMI834 Alloy
  • Hot Ductility
  • Hot Rolling Hot Tensile Test
1. Boyer R., Welsch G., Collings E.W., “Materials properties handbook: Titanium alloys”, ASM International, USA, pp. 439-444, (1994).
2. Singh N., Prasad N., Singh V., “On the occurrence of dynamic strain aging in near-alpha alloy Ti-5.8Al-4Sn-3.5Zr-0.7Nb-0.5Mo-0.35Si”, Metallurgical and Materials Transactions A, Vol. 30, pp. 2547-2549, (1999).
3. Omprakash C.M., Satyanarayana D.V.V., Kumar V., “Effect of primary α content on creep and creep crack growth behaviour of near α-Ti alloy”, Materials Science and Technology, Vol. 27, pp. 1427–1435, (2011).
4. Lia L.X., Raoa K.P., Louc Y., Peng, D.S., “A study on hot extrusion of Ti–6Al–4V using simulations and experiments”, International Journal of Mechanical Sciences, Vol. 44, pp. 2415–2425, (2002).
5. Polmear J., “Light alloys from traditional alloys to nanocrystals”, Fourth edition, Elsevier, Melbourne, pp. 299-366, (2006).
6. Weiss I., Semiatin S.L., “Thermomechanical processing of alpha titanium alloys- an overview”, Materials Science and Engineering A, Vol. 263, pp. 243-256, (1999).
7. Wanjara P., Jahazi M., Monajati H., Yue, S., “Influence of thermomechanical processing on microstructural evolution in near-α alloy IMI834”, Materials Science and Engineering A, Vol. 416, pp. 300-311, (2006).
8. Fujii H., Suzuki H.G., “A model for ductility loss at intermediate temperature in an alpha+ beta titanium alloy”, Scripta Metallurgica et Materialia, Vol. 24, pp. 1843-1846, (1990).
9. Rath B.B., Damkroger B.K., Imam M.A., Edwards G.R., “Report of Agency of the United States Government”, pp. 1-18, (1994).
10. Suzuki H.G., Eylon D., “Hot ductility of titanium alloy: a challenge for continuous casting process”, Materials Science and Engineering A, Vol. 243, pp. 126–133, (1998).
11. Suzuki H.G., Eylon D., “Hot ductility of titanium alloys- a comparison with carbon steels”, ISIJ International, Vol. 33, pp. 1270-1274, (1993).
12. Damkroger B.K., “Investigation of high temperature ductility losses in alpha-beta titanium alloys”, Ph.D. Thesis, Colorado School of Mines, Washington, pp. 1-417, (1988).
13. Damkroger B.K., Edwards G.R., Rath B.B., “A model for high temperature ductility losses in α-β titanium alloys”, Metallurgical Transactions A, Vol. 18, pp. 483-485, (1987).
14. Wanjara P., Jahazi M., Monajati H., Yue S., Immarigeon J.-P., “Hot working behaviour of near-α alloy IMI834”, Materials Science and Engineering A, Vol. 396, pp. 50-60, (2005).
15. Vo P., Jahazi M., Yue S., “Recrystallization during thermomechanical processing of IMI834”, Metallurgical and Materials Transactions A, Vol. 39, pp. 2965-2980, (2008).
16. Vo P., Jahazi M., Yue S., Bocher P., “Flow stress prediction during hot working of near-α titanium alloys”, Materials Science and Engineering A, Vol. 447, pp. 99-110, (2007).
17. Vo P., Jahazi M., Yue S., “Recrystallization during beta working of IMI834”, Advanced Materials Research, Vol. 15-17, pp. 965-969, (2007).
18. Vo P., “Flow and microstructure development of a near-alpha titanium alloy during thermomechanical processing”, Ph.D. Thesis, Department of Mining and Materials Engineering, McGill University, Montreal, Canada, pp. 1-181, (2009).
19. Wang X., Jahazi M., Yue S., “Substructure of high temperature compressed titanium alloy IMI 834”, Materials Science and Engineering A, Vol. 434, pp. 188-193, (2006).
20. Balasundar I., Raghu T., Kashyap B.P., “Modeling the high temperature deformation behaviour of a near alpha titanium alloy with bi-modal microstructure”, Materials Science Forum, Vol. 710, pp. 533-538, (2012).
21. Weiss I., Froes F., Eylon D., Welsch G., “Modification of alpha morphology in Ti-6Al-4V by thermomechanical processing”, Metallurgical Transactions A, Vol. 17, pp. 1935-1947, (1986).
22. Roy S., Suwas S., “The influence of temperature and strain rate on deformation response and microstructural evolution during hot compression of a titanium alloy Ti-6Al-4V-0.1B”, Journal of Alloys and Compounds, Vol. 548, pp. 110-125, (2012).
23. Pilehva F., Zarei-Hanzaki A., Ghambari M., Abedi H., “Flow behavior modeling of a Ti-6Al-7Nb biomedical alloy during manufacturing at elevated temperatures”, Materials and Design, Vol. 51, pp. 457-465, (2013).
24. Salishchev G.A., Zerebtsov S., Mironov S.Y., Semiatin S.L., “Formation of grain boundary misorientation spectrum in alpha-beta titanium alloys with lamellar structure under warm and hot working”, Materials Science Forum, Vol. 467-470, pp. 501-506, (2004).
25. Furuhara T., Poorganji B., Abe H., Maki T., “Dynamic recovery and recrystallization in titanium alloys by hot deformation”, JOM, Vol. 59, pp. 64-67, (2007).
26. Poorganji B., Yamaguchi M., Itsumi Y., Matsumoto K., Tanaka T., Asa Y., et al., “Microstructure evolution during deformation of a near-α titanium alloy with different initial structures in the two-phase region”, Scripta Materialia, Vol. 61, pp. 419-422, (2009).
27. Balasundar I., Raghu T., Kashyap B., “Modeling the hot working behavior of near-α titanium alloy IMI 834”, Progress in Natural Science: Materials International, Vol. 23, pp. 598-607, (2013).
28. Flower H.M., “Microstructural development in relation to hot working of titanium alloys”, Mater. Sci. Technol., Vol. 6, pp. 1082-1092, (1990)
CAPTCHA Image