ارزیابی رفتار زیست تخریب پذیری و الکتروشیمیایی آلیاژ منیزیم - آلومینیوم AZ91 با غشاء بایو نانوکامپوزیتی

نوع مقاله : علمی و پژوهشی

نویسنده

استادیار، دانشگاه پیام نور.

چکیده

یکی از مهمترین مشکلات استفاده از آلیاژهای منیزیم سرعت خوردگی بالای آنها است. به منظور رفع این مشکل روش اصلاح سازی سطحی و پوشش دهی مورد توجه قرار گرفته است. هدف اصلی از تحقیق حاضر اعمال غشاء پلیمری پلی کاپروالکتون/کیتوسان-1 %بغدادیت به روش غوطه وری بر روی آلیاژمنیزیم - آلومینیوم AZ91 آندایز شده به منظور بهبود مقاومت به خوردگی، زیست تخریب پذیری و زیست سازگاری این آلیاژ است. نتایج حاصل از آزمون الکتروشیمیایی نشان دهنده بهبود مقاومت به الکتروشیمیایی وکاهش چگالی جریان الکتروشیمیایی(کاهش 10^3 برابری) آلیاژ منیزیم - آلومینیوم AZ91 آندایز شده در اثر اعمال غشاء پلیمری-سرامیکی است. همچنین اعمال غشاء پلیمری-سرامیکی منجر به افزایش زبری سطح از 0/02 ± 0/329(منیزیم - آلومینیوم AZ91) به 34/0 ± 792/7 میکرومتر شده است. به منظور ارزیابی توانایی تشکیل آپاتیت روی نمونه ها، از آزمون مایع شبیه ساز بدن (بافر فسفات) استفاده شد. نتایج نشان میدهد که تشکیل لایه آپاتیت روی سطح نمونه میتواند به عنوان معیاری از زیست تخریب پذیریدر نظر گرفته شود

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of biodegradability and electrochemical behavior of magnesium-aluminum alloy AZ91 with bio-nanocomposite membrane

نویسنده [English]

  • Farzad Soleymani
Faculty Member of Payam Noor University
چکیده [English]

One of the most important problems of using magnesium alloys is their high corrosion rate. In order to solve this problem, the method of surface modification and coating has been considered. The main purpose of this research is to apply polycaprolactone/chitosan-1% Baghdadite polymer membrane by immersion method on anodized magnesium-aluminum AZ91 alloy in order to improve the corrosion resistance, biodegradability and biocompatibility of this alloy. The results of the electrochemical test show the improvement of the electrochemical resistance and the reduction of the electrochemical current density (10^3 times reduction) of the anodized magnesium-aluminum alloy AZ91 due to the application of the polymer-ceramic membrane. Also, the application of polymer-ceramic membrane has led to an increase in the surface roughness from 0.329 ± 0.02 (magnesium-aluminum AZ91) to 7.792 ± 0.34 micrometers. In order to evaluate the ability of apatite formation on the samples, the body simulating liquid test (phosphate buffer) was used. The results show that the formation of apatite layer on the surface of the sample can be considered as a measure of biodegradability

کلیدواژه‌ها [English]

  • Chitosan
  • Polycaproctone
  • Polymeric membrane
  • Magnesium alloy
  • Biodegradability
  • Phosphate
[1] E. M. Christenson, K. S. Ansecth, J. J. V. D. Bcuckcn, C. K. Chan, B. Ercan, J. A. Jansen, C. T. Laurencin, W. J. Li, R. Murugan, L. S. Nair, S. Ramakrishna, Tuan, R. S. "Nanobiomaterials application in orthopedics", Journal of Orthopedic Research, vol. 25, pp. 11-22, 2006.
[2] L. Ghorbanian, R. Emadi, S.M. Razavi, H. Shin, and A. Teimouri, "Fabrication and characterization of novel diopside/silk fibroin nanocomposite scaffolds for potential application in maxillaofacial bone regeneration", International Journal of Biological Macromolecules, vol. 58, pp. 275-280, 2013.
[3] Y. Xin, T. Hu, and P.K. Chu, "In vitro studies of biomedical magnesium alloys in a simulated physiological environment: a review", Acta biomaterialia, Vol. 7, Pp.1452-1459, 2011.
[4] J.G., siler, and J. Johnson, "Lliac crest autogenous bone grafting: donor site complications", Journal South Orthopedic Association, vol. 9, pp. 91-97, 2000.
[5] Y. Tabata, "Recent progress in tissue engineering", Drug Discovery Today, vol. 6, pp. 483-487, 2001.
[6] M. Saini, Y. Singh, P. Arora, V. Arora, and K. Jain, "Implant biomaterials: comprehensive review", World Journal of Clinical Cases: WJCC, vol. 3, pp. 52-57, 2015.
[7] K.S. Katti, "Biomaterials in total joint replacement", Colloids and Surfaces B: Biointerfaces, vol. 39, pp. 133-142, 2004.
[8] A. Zomorodian, M. P. Garcia, T. Moura e Silva, J. Fernandes, M. H. Fernandes, and M. F. Montemor, "Corrosion resistance of a composite polymeric coating applied on biodegradable AZ31 magnesium alloy", Acta Biomaterialia , vol. 9, pp. 8660-8670, 2013.
[9] T. Hanas, T.S. Kumar, G. Perumal, and M. Doble, "Tailoring degradation of AZ31 alloy by surface pre-treatment and electrospun PCL fibrous coating", Materials Science and Engineering: C, vol. 65, pp. 43-50, 2016.
[10] D. Zhao, F. Witte, F. Lu, J. Wang, J. Li, and L. Qin, "Current status on clinical applications of magnesium based orthopaedic implants: A review from clinical translational perspective", Biomaterials, vol. 112, pp. 287-302, 2017.
[11] D. Bian, W. Zhou, J. Deng, Y. Liu, W. Li, and X. Chu, "Development of magnesium-based biodegradable metals with dietary trace element germanium as orthopaedic implant applications", Acta biomaterialia, vol. 64, pp. 421-436, 2017.
[12] N. Li, and Y. Zheng, "Novel magnesium alloys developed for biomedical application: a review", Journal of Materials Science & Technology, vol. 29, pp. 489-502, 2013.
[13] Y. Chen, Z. Xu, C. Smith, and J. Sankar, "Recent advances on the development of magnesium alloys for biodegradable implants", Acta biomaterialia, vol. 10, pp. 4561-4573, 2014.
[14] S. Najeeb, Z. Khurshid, J.P. Matinlinna, F. Siddiqui, M. Z. Nassani, and K. Baroudi, "Nanomodified peek dental implants: Bioactive composites and surface modification-A review", International journal of dentistry, pp. 261-271, (2015).
[15] S. Sadeghzade, F. Shamoradi, R. Emadi, and F. Tavangarian, "Fabrication and characterization of baghdadite nanostructured scaffolds by space holder method", Journal of the mechanical behavior of biomedical materials, vol. 68, pp. 1-7, (2017).
[16] Q. Z. Chen, I. D. Thompson, and A. R. Boccaccini, "45S5 Bioglass-derived glass-ceramic scaffolds for bone tissue engineering", Biomaterials, vol. 27, pp. 2414-2425, 2006.
[17] H. Bakhsheshi-Rad, E. Hamzah, A. Ismail, M. Aziz, M. Kasiri-Asgarani, and E. Akbari, et al., "Synthesis of a novel nanostructured zinc oxide/baghdadite coating on Mg alloy for biomedical application: In-vitro degradation behavior and antibacterial activities", Ceramics International, vol. 43, pp. 14842-14850, 2017.
[18] A. Golshirazi, M. Kharaziha, and M. Golozar, "Polyethylenimine/Kappa Carrageenan:"Micro-arc Oxidation Coating for Passivation of Magnesium Alloy", Carbohydrate Polymers, vol. 167, pp. 185-195, 2017.
[19] T. Hanas, T.S. Kumar, G. Perumal, and M. Doble, "Tailoring degradation of AZ31 alloy by surface pre-treatment and electrospun PCL fibrous coating", Materials Science and Engineering: C, vol. 65, pp. 43-50, 2016.
[20] P.N. Chavan, M. m. Bahir, R. u. Mene, M. P. Mahabole, and R. S. Khairnar, "Study of nanobiomaterial hydroxyapatite in simulated body fluid: formation anf growth of apatite", Materials Science and Engineering :B, vol. 168, pp 224-230, 2010.
[21] S. Sadeghzade, F. Shamoradi, R. Emadi, and F. Tavangarian, "Fabrication and characterization of baghdadite nanostructured scaffolds by space holder method", Journal of the mechanical behavior of biomedical materials, vol. 68, pp. 1–7, 2017.
[22] M. Razavi, M. Faith, O. Savabi, B. H. Beni, D. Vashaee, and L. Tayebi, "Surface microstructure and in vitro analysis of nanostructured akermanite (Ca2MgSi207) coating an biodegradable magnesium alloy for biomedical applications", Colloids and Surfaces B:Biointerface, vol.117, pp 432-440, 2014.
[23] Y. Zhang, and C. W. Yan, "Development of anodic film on Mg alloy AZ91D", Surface and Coatings Technology", vol. 201, pp. 2381–2386, 2006.
[24] F. Brusciotti, D. Snihirova, H. Xue, M. Montemor, S. Lamaka, and M. Ferreira, "Hybrid epoxy–silane coatings for improved corrosion protection of Mg alloy", Corrosion Science, vol. 67, pp. 82–90, 2018.
[25] L. d. Y. Pozzo, T. F. da Conceição, A. Spinelli, N. Scharnagl and A.T. Pires, "Chitosan coatings crosslinked with genipin for corrosion protection of AZ31 magnesium alloy sheets", Carbohydrate polymers, vol. 181, pp. 71-77, 2018.
[26] M. Kong, X. Chen, K. Xing, and H. Park,"Antimicrobial properties of chitosan and mode of action:a state of art review", International Journal of Food Microbiology,vol.144, no.1,pp.51-63, 2010.
[27] F. Tavangarian, and R. Emadi, "Nanostructure effects on the bioactivity of forsterite bioceramic", Material Letter, vol. 65, pp. 740-743, 2011.
CAPTCHA Image