طراحی و مشخصۀابی عملگر نرم الکتروفعال- الهام گرفته از طبیعت، بر پایۀ کامپوزیت سیلیکون- اتانول

نوع مقاله : مقاله پژوهشی

نویسندگان

1 مهندسی مواد و متالورژی،دانشکده مهندسی، دانشگاه فردوسی مشهد، مشهد، ایران

2 گروه مهندسی برق، دانشکده مهندسی، دانشگاه فردوسی مشهد، مشهد، ایران

3 گروه مهندسی متالورژی و علم مواد، دانشکدۀ مهندسی، دانشگاه فردوسی مشهد.

چکیده

ساخت ربات‌های نرم برای تقلید حرکات طبیعی موجودات زنده بااستفاده از تحریک خارجی قابل کنترل، غالباً به‌واسطۀ سیستم‌های تحریکی نظیر عملگرهای پنوماتیکی، هیدرولیکی، الکتریکی، مغناطیسی و حافظه‌دار انجام می‌پذیرد. در این پژوهش با الهام از ماهیچه‌های طبیعی، رباتی نرم با پاسخگویی سریع، به‌واسطۀ ساخت کامپوزیتی پلیمری با سیال تغییر فازدهنده به‌عنوان فاز ثانویه ساخته شد. عملگر ساخته‌شده قادر به جابه‌جایی به‌میزان 25% (کشش عضلات طبیعی)، با صرف توانی معادل با W12 می‌باشد. مشاهدات میکروساختاری بیانگر توزیع همگن فاز ثانویه درون میکروکپسول‌هایی با اندازۀ کمتر از m20µ در سراسر زمینه می‌باشد. ثبات دمای داخلی عملگر در بازۀ C60-70°، در حین دوره‌های تحریکی متوالی و دست‌یابی به میزان جابه‌جایی مطلوب، موجب کاربرد این ربات نرم در بسیاری از حوزه‌ها می‌گردد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Design and Characterization of Electrically Driven-Bioinspired Soft Actuator based on Silicon- Ethanol Composite

نویسندگان [English]

  • amirhossein ebrahimi 1
  • hojat zamyad 2
  • Javad safaie 2
  • Samane Sahebian 3
1 Department of materials and metallurgy engineering, Ferdowsi university of Mashhad, Mashhad,Iran
2 Department of Electronic Engineering, Ferdowsi University of Mashhad, Mashhad, iran
3 Department of Materials Science and Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran.
چکیده [English]

Manufacturing soft robots to mimic the natural movements of living organisms by controllable external stimuli required actuation systems like pneumatic, hydraulic, electrical, magnetic, and memory actuators. Inspired by natural muscles, a fast-responsive soft robot was fabricated by a polymer composite with a phase-change fluid as a secondary phase. The synthesis actuator can displace up to 25% (normal muscle tension), with a power equivalent to 12W. The microstructural observations show that the second phase is homogeneously distributed within microcapsules of less than 20 µm in size across the matrix. The stability of the internal temperature of the actuator in the range of 60-70°C during successive excitation cycles and the ability to achieve the desired amount of displacement allows the use of this soft robot in many areas.

کلیدواژه‌ها [English]

  • soft robot
  • artificial muscle
  • phase change fluid
  • silicon
  • ethanol
  1. Lee, C., Kim, M., Kim, Y. J., Hong, N., Ryu, S., Kim, H. J., Kim, S., "Soft Robot Review", J. Control. Autom. Syst. Vol. 15, pp. 3–15. https://doi.org/10.1007/s12555-016-0462-3, (2017).
  2. George Thuruthel, T., Ansari, Y., Falotico, E., Laschi, C., "Control Strategies for Soft Robotic Manipulators: A Survey", Soft Robot. Vol. 5, pp. 149–163. https://doi.org/10.1089/soro.2017.0007, (2018).
  3. Bogue, R., "Artificial Muscles and Soft Gripping: A Review of Technologies and Applications", Rob. 39 , pp. 535–540. https://doi.org/10.1108/01439911211268642, (2012).
  4. Gorissen, B., Reynaerts, D., Konishi, S., Yoshida, K., Kim, J. W., De Volder, M., "Elastic Inflatable Actuators for Soft Robotic Applications", Adv. Mater. 29, https://doi.org/10.1002/adma.201604977, (2017).
  5. Miriyev, A., "A Focus on Soft Actuation", Actuators. 8, https://doi.org/10.3390/ACT8040074, (2019).
  6. Manti, M., Hassan, T., Passetti, G., D’Elia, N., Laschi, C., Cianchetti, M., "A Bioinspired Soft Robotic Gripper for Adaptable and Effective Grasping", Soft Robot. 2, 107–116. (2015).
  7. Mirvakili, S. M., Hunter, I. W., "Artificial Muscles: Mechanisms, Applications, and Challenges", Adv. Mater. 30. https://doi.org/10.1002/adma.201704407, (2018).
  8. Mirfakhrai, T., Madden, J. D. W., Baughman, R. H., "Polymer Artificial Muscles", Mater. Today. 10, pp. 30–38. https://doi.org/10.1016/S1369-7021(07)70048-2, (2007).
  9. Bar-Cohen, Y., "Electroactive Polymers as Artificial Muscles: A Review", Spacecr. Rockets. Vol. 39, pp. 822–827. https://doi.org/10.2514/2.3902, (2002).
  10. Meng, H., Li, G., "A Review of Stimuli-Responsive Shape Memory Polymer Composites", Polymer (Guildf). 54, Pp. 2199–2221. https://doi.org/10.1016/j.polymer.2013.02.023, (2013).
  11. Saga, N., Nagase, J., Saikawa, T., "Pneumatic Artificial Muscles Based on Biomechanical Characteristics of Human Muscles", Appl. Bionics Biomech. 3, Pp. 191–197. https://doi.org/10.1533/abbi.2006.0028, (2006).
  12. Tzou, H. S., Lee, H. J., Arnold, S. M., "Smart Materials, Precision Sensors/Actuators, Smart Structures, and Structronic Systems", Mech. Adv. Mater. Struct. 11, Pp. 367–393. (2004).
  13. Mondal, S., "Phase Change Materials for Smart Textiles - An Overview", Appl. Therm. Eng. 28, Pp. 1536–1550. https://doi.org/10.1016/j.applthermaleng.2007.08.009, (2008).
  14. Ogden, S., Klintberg, L., Thornell, G., Hjort, K., Bodén, R., "Review on Miniaturized Paraffin Phase Change Actuators, Valves, and Pumps", Microfluid. Nanofluidics. 17, Pp. 53–71. https://doi.org/10.1007/s10404-013-1289-3, (2014).
  15. Qiu, X., Li, W., Song, G., Chu, X., Tang, G., "Microencapsulated N-Octadecane with Different Methylmethacrylate-Based Copolymer Shells as Phase Change Materials for Thermal Energy Storage", Energy. 46, Pp. 188–199. https://doi.org/10.1016/j.energy.2012.08.037, (2012).
  16. Cui, Y., Liu, C., Hu, S., Yu, X., "The Experimental Exploration of Carbon Nanofiber and Carbon Nanotube Additives on Thermal Behavior of Phase Change Materials", Sol. Energy Mater. Sol. Cells. 95, Pp. 1208–1212. https://doi.org/10.1016/j.solmat.2011.01.021, (2011).
  17. Chellattoan, R., Yudhanto, A., Lubineau, G., "Low-Voltage-Driven Large-Amplitude Soft Actuators Based on Phase Transition", Soft Robot. 7, Pp. 688–699. https://doi.org/10.1089/soro.2019.0150, (2020).
  18. Kang, D. J., An, S., Yarin, A. L., Anand, S., "Programmable Soft Robotics Based on Nano-Textured Thermo-Responsive Actuators", Nanoscale. 11, Pp. 2065–2070. https://doi.org/10.1039/c8nr08215d, (2019).
  19. Miriyev, A., Xia, B., Joseph, J. C., Lipson, H., "Additive Manufacturing of Silicone Composites for Soft Actuation", 3D Print. Addit. Manuf. 6, Pp. 309–318. https://doi.org/10.1089/3dp.2019.0116, (2019).
  20. Miriyev, A., Caires, G., Lipson, H., "Functional Properties of Silicone/Ethanol Soft-Actuator Composites", Mater. Des. 145, Pp. 232–242. https://doi.org/10.1016/j.matdes.2018.02.057, (2018).
  21. Cartolano, M., Xia, B., Miriyev, A., Lipson, H., "Conductive Fabric Heaters for Heat-Activated Soft Actuators", Actuators. 8, https://doi.org/10.3390/act8010009, (2019).
  22. Xia, B., Miriyev, A., Trujillo, C., Chen, N., Cartolano, M., Vartak, S., Lipson, H., "Improving the Actuation Speed and Multi-Cyclic Actuation Characteristics of Silicone/Ethanol Soft Actuators", Actuators. 9. https://doi.org/10.3390/ACT9030062, (2020).
  23. Miriyev, A., Trujillo, C., Caires, G., Lipson, H., "Rejuvenation of Soft Material-Actuator", MRS Commun. 8, Pp. 556–561. https://doi.org/10.1557/mrc.2018.30, (2018).
  24. Otero, T. F., Sansiñena, J. M., "Soft and Wet Conducting Polymers for Artificial Muscles", Adv. Mater. 10, Pp. 491–494. https://doi.org/10.1002/(SICI)1521-4095(199804)10:6<491::AID-ADMA491>3.0.CO;2-Q, (1998).
  25. Bilodeau, R. A., Mohammadi Nasab, A., Shah, D. S., Kramer-Bottiglio, R., "Uniform Conductivity in Stretchable Silicones: Via Multiphase Inclusions", Soft Matter. 16, pp. 5827– 5839. https://doi.org/10.1039/d0sm00383b, (2020).
  26. Miriyev, A., Stack, K., Lipson, H., "Soft Material for Soft Actuators", Nat. Commun. 8. https://doi.org/10.1038/s41467-017-00685-3, (2017).

 

 

CAPTCHA Image