Effect of Aging Heat Treatment and Extrusion Process on Mechanical Properties of Al-3Mg-2.5 Cu-xEr Alloy
Research Article
Mohammad Alipour 1
DOI: 10.22067/jmme.2023.82403.1109

1- Introduction
Al alloys are very popular for structural applications due to their low density, high strength, weldability and good workability. In particular the extruded profiles are used for making crash boxes in cars, fuselage stringers and frames for airframe structures. In particular the grain refinement in Al alloys is mainly by heterogeneous nucleation and grain growth. Several studies have shown the importance of addition of various grain refiners like Al-10Ti, Al-5Ti-1B, Al-8B to aluminum alloys has influenced the microstructure, mechanical and tribological properties. Especially the combination of new processing technique like strain induced melt activation process and grain refiners has enhanced the mechanical properties of Al-Mg-Cu series. On the other hand the rare earth elements like La, Sc, Ce and Er are also used for refining grain sizes and modifying the eutectic microstructures. Fang et al. studied the effect of rare earth element like Er on the mechanical and corrosion characteristics of AlZnMgCu alloy. The secondary precipitate like Al3Er with size of 15-25 nm was found to inhibit the recrystallization and improved fracture toughness. Liu et al. studied the effect of Sc and Zr addition on hardness and tensile properties of AlZnMgCu alloy sheets fabricated by a combination of hot and cold rolling. With the increase in Sc and Zr addition, the alloy found to exhibit resistance to recrystallization by inhibiting dislocation mobility. Hardness and tensile strength was found to be enhanced due to presence of large volume fraction of precipitates of Al3Sc and Al3Zr. Due to the possibility of aging of the alloy used in this research, the aging steps were carried out on this alloy and the simultaneous effect of aging heat treatment and mechanical deformation (extrusion) on this alloy was investigated. According to the research, the simultaneous effect of these two processes on this series of alloys has not been done. The main goal of this research is to study the effect of extrusion process and heat treatment on mechanical properties and microstructure of Al-3Mg-2.5Cu-xEr alloy.

2- Experimental
Al-3Mg-2.5Cu alloy was used as base alloy. Melting of aluminum alloy was done by heating up to ~750°C. Er was added to the molten alloy at a temperature of 750°C using Amighan Al-30Er in different percentages of 0.5, 1, 1.5 and 2% by weight. After the successful addition of Er, the melt was poured into a permanent mold designed and manufactured according to ASTM B557M-10. A scanning electron microscope equipped with X-ray energy diffraction analysis (EDX) was used for microstructural studies. The cut parts of the alloy were polished and then etched using sandpaper to obtain the desired structure. The average grain size of the samples was measured according to ASTM: E112 standard. The phase was determined by X-ray diffraction method. Tensile test was performed on all the samples at room temperature with the SANTAM machine with a strain rate of 1 mm/min. Four samples were prepared and tested for each of the percentages and the average value was reported in the article. Before the tensile test, the extrusion process was applied to all the samples. In other words, samples made under different conditions using a hydraulic press at a speed of 1 mm/s at a temperature of 320 °C on a primary cylindrical billet with a diameter of 29 mm with an extrusion ratio of 6 to 1 (which is the ratio of the cross-sectional area of the initial billet to the final cross-sectional area after extrusion) was extruded. Figure 1 shows the metal mold, the dimensions of the tensile sample and the schematic of the extrusion mold. After applying extrusion on the samples, the tensile test was performed on the samples again. To study the effect of heat treatment (T6 conditions) on mechanical properties, Al-3Mg-2.5Cu alloy cast samples were heated to 460 °C for 8 hours and then immediately cooled with water. Finally, the cooled samples were heated at 120°C for 24 hours in an oven.
Results and Discussion

Figure 1 shows the microstructure images of Al-3Mg-2.5Cu alloy casting and modified with different weight percentages of Er. The images clearly show that after the addition of Er, a remarkable change occurs in the dendritic morphology of the Al-3Mg-2.5Cu alloy.

Figure 2 shows the effect of different amounts of Al-30Er on the grain size of Al-3Mg-2.5Cu alloy. It was found that the average grain size of the basic Al-3Mg-2.5Cu alloy was about 550 μm. The addition of Er to the Al-3Mg-2.5Cu alloy severely fines the primary columnar and coarse α-Al grains and produces fine coaxial α-Al grains with an average size of 65 μm.

Table 1 shows the mechanical properties of Al-3Mg-2.5Cu alloy under different conditions. As seen in Table 1, the average ultimate tensile strength (UTS) of the samples before and after the T6 extrusion and heat treatment processes increased from 225 MPa to 602 MPa. The tensile properties of Al-3Mg-2.5Cu-xEr alloy mainly depend on the shape, size, distribution of α-Al grains, secondary phase structure and distribution of intermetallic among the grains.

Table 1. UTS of unrefined and Er refined samples at the different conditions.

<table>
<thead>
<tr>
<th>Er %</th>
<th>As-cast</th>
<th>As-cast-T6</th>
<th>As-cast-extrusion</th>
<th>As-cast-extrusion-T6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>230</td>
<td>460</td>
<td>275</td>
<td>510</td>
</tr>
<tr>
<td>0.5</td>
<td>245</td>
<td>480</td>
<td>303</td>
<td>530</td>
</tr>
<tr>
<td>1</td>
<td>270</td>
<td>500</td>
<td>317</td>
<td>580</td>
</tr>
<tr>
<td>1.5</td>
<td>242</td>
<td>475</td>
<td>300</td>
<td>528</td>
</tr>
<tr>
<td>2</td>
<td>235</td>
<td>468</td>
<td>278</td>
<td>512</td>
</tr>
</tbody>
</table>

4- Conclusion

1- The mechanical properties of Al-3Mg-2.5Cu alloys mainly depend on the shape and size of deposits and grain size of α-Al and the distribution of secondary phases.
2- Al-30Er is effective in reducing the grain size, changing the dendritic morphology and creating a fine and uniform microstructure.
3- The increase in tensile properties with the addition of Er nucleating agent is due to the breaking of primary α-Al grains and the formation of α-Al grains with a more uniform distribution and a narrower distribution of secondary phases.
4- The optimal percentage of germinating Er in this research was selected as one weight percent, and in this weight percentage of Amijan, the highest tensile properties were obtained.
5- The final tensile strength of casting alloys increases significantly by adding Er. This is mainly due to the micro-dispersion and uniform distribution of eutectic phase and α-Al dendrite and strengthening through precipitated Al3Er particles using Oravan mechanism.
Effect of Aging Heat Treatment and Extrusion Process on Mechanical Properties of Al-3Mg-2.5Cu-xEr Alloy

Mohammad Alipour

Abstract In this study, the effect of Al-30Er grain refiners, extrusion and heat treatment conditions on an Al-3Mg-2.5Cu aluminum alloy was studied. Different amounts of Al-30Er (0.5 wt.% Er, 1 wt.0% Er, 1.5 wt.% Er and 2 wt.% Er) were added to the molten alloy at 750 °C. The optimum level of Er was found to be 1 wt.%. Microstructural examinations and fracture surfaces were conducted by scanning electron microscopy coupled with an energy dispersive spectrometry. T6 heat treatment including quenching to room temperature and aging at 120 °C for 24 h was employed to reach to the maximum strength. In order to eliminate the porosity inside the samples and improve the strength of the samples, the extrusion process was used with a ratio of 6 to 1. For the prototypes in the direction of extrusion, the diameter of the primary cylinder is 29 mm. By adding grain refiners and applying T6 heat treatment and extrusion process, a significant improvement in mechanical properties was achieved. The average ultimate tensile strength (UTS) of the samples before and after T6 heat treatment and extrusion process increased from 225 MPa to 602 MPa. Addition of one percent by weight of Er, applying heat treatment and extrusion process, caused a 167% improvement in tensile strength compared to the base aluminum alloy.

Keywords Rare earth, Heat treatments, Mechanical Properties, Microstructure.
مقدمه
ریزش‌های کربن آلیاژهای آلومینیوم از مبدا تا تیرین عملیات در صنایع شمش ریز و ریخته گری آلیاژهای آلومینیوم است. این کار به طور معمول با اضافه کربن جوان جازا رد صورت می گیرد. لذا استفاده از جوونه زای اندازه جهت رفع‌دکانی آلیاژهای آلومینیوم می‌تواند تاثیر زیادی بر کیفیت یکی گونه قطعات داشته باشد. آلیاژهای آلومینیوم سری ۷۰۰۰ یک آلیاژ آلومینیوم منیتریم است که خواص مقاومت در برابر خوردگی و چرمانی و قابلیت جوشکاری خوب و استحکام منطقه ای دارد [1] و از خانواده آلیاژهای آلومینیوم کاربردی (Wrought Aluminum Alloy) آلیاژ آلومینیوم 5XXX است. این آلیاژ آلومینیوم 5XXX به صورت ۷۰ سال پیش مورد استفاده قرار گرفته است. از این آلیاژ آلومینیوم 5XXX می‌تواند کاربردی در صنعت مهندسی متالورژی و مواد باشد. آلیاژ آلومینیوم 5XXX معمولاً با آلومینیوم بیان‌شده یافته هستند که به استفاده‌ای انواع جوانه‌زایی و پیچیدگی می‌شدند. شمش الکتریکی مرکز ساختاری و مواد آلیاژ آلومینیوم در صنعت مهندسی متالورژی و مواد آلیاژهای آلومینیوم کربن آلیاژهای آلومینیوم سری ۵XXX که به استحکام بالا می‌رسند استفاده می‌شود. با این حال، هزینه یکی روش تولید به واسطه جوانه‌زایی و مواد آلیاژ آلومینیوم سری ۵XXX ممکن است که به استحکام‌های بالایی برای استحکام بالا می‌رسند استفاده می‌شود. به این ترتیب، هزینه‌ی جوانه‌زایی و مواد آلیاژ آلومینیوم سری ۵XXX ممکن است که به استحکام بالا می‌رسند استفاده می‌شود. به این ترتیب، هزینه‌ی جوانه‌زایی و مواد آلیاژ آلومینیوم سری ۵XXX ممکن است که به استحکام بالا می‌رسند استفاده می‌شود.
دانشجوی انحلال شده است. طبق شکل (3) ملاحظه می‌شود که افزودن Er تعداد مزرعه‌های مس ت محلول توپیز همکنر و سربک طی فاز‌های پیچیده که در افزودن Er شکل و اندازه فاز پنکتک را تغییر می‌دهد. مقدار به کار بردن Al-3Mg-2.5Cu به‌همراه Er که می‌توان برای آیا آیا به‌طور کامل متقابلی، نمونه‌های ساختاری آیا (T6) سیس با آب فوراً سرد. در نهایت، نمونه‌های سرد شده در دمای 120 درصد وزن (wt%) Er عضوی مقدار بالای آماده شده است. در برخی از موارد، تغییر تعداد سیس در حدود 56% را به وجود می‌آورد. مشاهده شده که مقدار مس (wt%) Er می‌تواند به‌طور بالای آماده شده است.

شکل (2) تأثیر مقادیر مختلف آیا آیا 30 Er نشان می‌دهد. مشخص شد که میانگین Al-3Mg-2.5Cu انتزاع دانه ی آیا آیا 30 Er از میانگین خاصیت آیا آیا ماتریس از میانگین خاصیت آیا آیا ماتریس توزیع شده است. میانگین‌های مختلف توزیع شده در آنها هم می‌تواند باعث پیش‌بینی نکرده و در این مورد نمونه مس از میانگین مس Al-30 Er از آیا آیا باعث مشاهده شده است. بروز این دیدگاه در مورد آیا آیا 30 Er نشان می‌دهد که در این مورد کم‌تعداد سیس در حدود 36% را تغییر می‌دهد. مشاهده شده که مقدار مس (wt%) Er می‌تواند به‌طور بالای آماده شده است.

شکل 1 (الف) قاب لیزر غیر (ب) مقدار نمونه تست کشش (ج) قاب لیزر اکستروژن

نتایج و بحث

مطالعات ریسک‌سنجی

شکل (2) تصاویر ریسک‌سنجی ریسک‌سنجی غیر آیا آیا در محدود دارای رشد سیس 2.5Cu و 2.5Cu سیس با آب فوراً سرد. در نهایت، نمونه‌های سرد شده در دمای 120 درصد وزن (wt%) Er عضوی مقدار بالای آماده شده است. در برخی از موارد، تغییر تعداد سیس در حدود 56% را به وجود می‌آورد. مشاهده شده که مقدار مس (wt%) Er می‌تواند به‌طور بالای آماده شده است.

شکل 1 (الف) قاب لیزر غیر (ب) مقدار نمونه تست کشش (ج) قاب لیزر اکستروژن

نتایج و بحث

مطالعات ریسک‌سنجی

شکل (2) تصاویر ریسک‌سنجی ریسک‌سنجی غیر آیا آیا در محدود دارای رشد سیس 2.5Cu و 2.5Cu سیس با آب فوراً سرد. در نهایت، نمونه‌های سرد شده در دمای 120 درصد وزن (wt%) Er عضوی مقدار بالای آماده شده است. در برخی از موارد، تغییر تعداد سیس در حدود 56% را به وجود می‌آورد. مشاهده شده که مقدار مس (wt%) Er می‌تواند به‌طور بالای آماده شده است.
تاثیر عملیات حرارتی پیرسختی و فرآیند اکستروژن بر خواص مکانیکی آلیاژ...
بدین معنی است که نابجاگی توسط رسوپ را رانده می‌شود. با این حال، برای کسر حجمی ثابتی از ذره، در مقایسه با دیل افزایش واصل ذره، این نابجاگی کم‌کم یک ذره را را به سمت ماده حرارتی جذب می‌کند. بنابراین، نابجاگی تعداد کاهش یافته است. با این حال، نابجاگی نیز بر آن، مکانیسم ارور نامیده می‌شود.

که این سری از آلیاژها قابلیت عملیات حرارتی داشته باشد.

RSAW attenuated test and fracture toughness of Al-Mg-Cu alloys after Al-3Mg-2.5Cu.
این سری از آلیاژها قابلیت عملیات حرارتی داشته باشند.

شکل 5. تصویر SEM نمونه‌های اصلاح شده با (الف) 0.5 درصد Er درصد 1 درصد, (ب) 2 درصد Er درصد و (ج) 2 درصد Er درصد از عملیات T6. (ب) 321x584 to 527x730
استحکام کششی

جدول 1: خواص مکانیکی آلیاژ Al-3Mg-2.5Cu-
α Er را تحت شرایط مختلف نشان می‌دهد. همان طور که در جدول (1) مشاهده می‌شود، میزان‌گی استحکام کششی نهایی (UTS) توسط تخلیه از فرآیندهای استخراج و عملیات حرارتی T6 و استحکام F افزایش یافته است. خواص کششی آلیاژ α-
α Er اعمدها به شکل اندازه‌گیری شدند. نتیجه‌گیری‌ها در پانزده تاریخ 17 آوریل 1989 (تاریخ تولید) صورت گرفت که میزان کششی نهایی (UTS) متغیر این آلیاژ در این شرایط به‌طور گسترده‌ای تغییر می‌کند.

<table>
<thead>
<tr>
<th>Er %</th>
<th>As-cast</th>
<th>As-cast-T6</th>
<th>As-cast-extrusion</th>
<th>As-cast-extrusion-T6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>230</td>
<td>460</td>
<td>275</td>
<td>510</td>
</tr>
<tr>
<td>0.5</td>
<td>245</td>
<td>480</td>
<td>303</td>
<td>530</td>
</tr>
<tr>
<td>1</td>
<td>270</td>
<td>500</td>
<td>317</td>
<td>580</td>
</tr>
<tr>
<td>1.5</td>
<td>242</td>
<td>475</td>
<td>300</td>
<td>528</td>
</tr>
<tr>
<td>2</td>
<td>235</td>
<td>468</td>
<td>278</td>
<td>512</td>
</tr>
</tbody>
</table>

علت اصلی این بهبود، به احتمال زیاد اندپار کوچک‌تر دانه‌ها است که به توزیع بکوناخت تر کوچک‌تری از فازهای ثانویه Al-3Mg-2.5Cu-
α Er منجر می‌شود. مشخص است که طبق نظریه‌های جهت‌ها، هر چه‌چ
نتایج گیری

نتایج زیر از این مطالعه قابل استخراج است:

1. خواص مکانیکی آلیاژهای Al-3Mg-2.5Cu و توزیع فازهای نانویی این آلیاژ باعث ایجاد ریزشناسی، افزایش ضخامت و کاهش قابلیت تغییر شکل می‌شود.

2. اثر جهشی و پیوند از شکست نمونه کشش برای (الف) آلیاژ پایه، (ب 1 درصد Er)، (ج 1 درصد Er بعد از عملیت T)، و (د 1 درصد Er بعد از عملیات T6 و فرآیند استریورژن) انتخاب شد که در این درصد وزنی از آمیان، بیشترین خواص کششی بدست آمد.

3. افزایش خواص کششی آلیاژهای Al-3Mg-2.5Cu عمداً به شکل، اندازه رسککوبات و اندازه دانه α-Al و توزیع فازهای ثانویه بستگی دارد.

4. درصد جهشی از جونه زا Er در این پژوهش یک درصد وزنی انتخاب شد که در این درصد وزنی از آمیان، بیشترین خواص کششی بدست آمد.

5. استحکام کششی نهایی آلیاژهای ریخته‌گیری یافتند که با افزودن Er به آلیاژ، طرز قابل ملاحظه‌ای افزایش می‌یابد. این عملکرد به دلیل ریزش و پیوند‌کننده فاز باروکتیک و توزیعی Al-Er و مقام‌سازی از طریق ذرات رسوبی با استفاده از Al3Er مکانیسم اورولاوی است.

 وكذلك تقدیر و تشکر

مراجع

