ساخت نانو بیوکامپوزیت TiO2Al2O3HAتوسط روش زینترینگ و بررسی زیست فعالی آن در محلول SBF برای کاربردهای ارتوپدی

نوع مقاله : علمی و پژوهشی

نویسندگان

1 دانشگاه آزاد واحد یزد و داننشگاه علوم و تحقیقات یزد

2 دانشگاه علوم و تجقیقات یزد

3 دانشگاه صنعتی امیرکبیر

چکیده

در این مطالعه، دو نانوبیومادهی مرکب پایه سرامیکی از جنس هیدروکسی آپاتایت (HA)، Al2O3 و TiO2 با خواص زیستسازگاری و مکانیکی قابل توجه و قابلیّت تشکیل آپاتایت بر روی سطح، با روش فشردن سرد و تفجوشی ساخته شد. استحکام فشاری نمونههای تولیدی ارزیابی شد. نتایج حاصل از آزمون تعیین استحکام، افزایش استحکام فشاری نمونهی A )حاوی 50 درصد وزنی ذرات تیتانیا، 30 درصد وزنی هیدروکسی آپاتایت و 20 درصد وزنی آلومینا) را نسبت به نمونهی B (حاوی 50 درصد وزنی ذرات هیدروکسی آپاتایت، 30 درصد وزنی ذرات تیتانیا و 20 درصد وزنی آلومینا) نشان دادند. افزون بر این، از نتایج آزمون تعیین تخلخل نتیجه شد که نمونهی A دارای تخلخل کمتری نسبت به نمونهی B میباشد. برای بررسی زیستفعّالی، نمونهها بهمدّت زمان 7 روز در محلول شبیهسازی شدهی بدن (SBF) غوطهور شدند. نتایج حاصل از این آزمون نشان دادند که نمونهی B توانایی بیشتری را برای تشکیل ترکیبات نوع کلسیم فسفات بر روی سطح نسبت به نمونهی A دارد. همچنین، آزمونهای آزمایشگاهی برون تنی و تعیین سمیّت سلولی (MTT)، چسبیدن و پهنشدگی سلولهای MG-67(استئوبلاست) را بر روی سطح نمونهها نشان دادند. از نتایج این آزمونها، افزایش رشد و تکثیر سلولها بر روی نمونهی B نسبت به نمونهی Aنتیجه شد. در نهایت، آزمون پراش پرتوی ایکس (XRD)، بررسیهای میکروسکُپ الکترونی روبشی (SEM)، آزمون تعیین عنصر
(ENERGY DISPERSIVE X-RAY ANALYSIS (EDX) و آزمون طیف‌سنجی مادون قرمز تبدیل فوریه (FTIR)، بهترتیب برای شناسایی فازها، مطالعهی ریزساختار، تعیین درصد عناصر و شناسایی پیوندهای تشکیل شده در نمونهها انجام شدند. افزون بر این، برای جلوگیری از ایجاد ریزترک و تشکیل فازهای ثانویه، عملیّات تفجوشی نمونهها در دمای °C 1000 انجام شد. نتایج آزمایشها نشان دادند که هر دو نانوبیومادهی مرکب، با توجه به خواص متفاوتی که دارند، میتوانند برای کاربرد بهعنوان مادهی کاشتنی در دندانپزشکی و اُرتوپدی استفاده شوند.

کلیدواژه‌ها


عنوان مقاله [English]

Fabrication of TiO2-Al2O3-HA Nanobiocomposite by Sintering method and Evalution of In Vitro Bioactivity for Orthopedic Applications

نویسندگان [English]

  • mahboobeh mahmoodi 1
  • Pyman Mahmoodi Hashemi 2
  • Rana Imani 3
1 Islamic Azad University- Yazd Branch
2 Islamic Azad University-Science and Research-Yazd Branch
3 Amirkabir University
چکیده [English]

For the purposes of this study, Hydroxyapatite (HA)-Al2O3-TiO2 nanobiocomposites with significant mechanical properties, biocompatibility and capability to form surface apatite were fabricated by cold pressing and sintering. Samples were examined for their compressive strengths. The results of compression experiments showed that sample A (50 wt.% TiO2-30 wt.% HA- 20 wt.% Al2O3) was superior compared with sample B (30 wt.% TiO2-50 wt.% HA- 20 wt.% Al2O3). In addition, the examination of porosity in samples' surfaces showed that sample A has less prosity than sample B. In vitro bioactivity of the nanobiocomposites in a simulated body fluid (Simulated Body Fluid (SBF)) was also investigated. After immersing the samples in the SBF solution for 7 days, sample B exhibited greater ability to form calcium phosphate compounds on the surface. In vitro studies showed that MG-67 osteoblast-like cells were attached and spread on the samples' surfaces. The results showed that cells proliferated in greater numbers on the B sample compared to the A sample. Finally, X-Ray diffraction (XRD) and scanning electron microscopic examinations, energy-dispersive X-ray Analysis (EDX), and Fourier transform infrared spectroscopy (FTIR) were performed in order to identify different phases, to study the microstructures, to determine concentration of different elements, and to identify the bonds formed in samples, respectively. To prevent the formation of microcracks and secondary phases, sintering operation was conducted at 1000 °C. Based on the results obtained and considering desirable properties of samples, both nanobiocomposites can be used in dental implants and orthopedic applications.

کلیدواژه‌ها [English]

  • Nanobiocomposite
  • Sintering
  • Hydroxyapatite
  • Alomina
  • Titania
  • Bioactivity
1. Dorozhkin, S.V., "Bioceramics of calcium orthophosphates", Biomaterials., Vol. 31, pp. 1465-1485, (2010).
2. Bellucci, D., Cannillo, V., Sola, A., Chiellini, F., and Gazzarri, M., Migone, C., "Macroporous Bioglass®-derived scaffolds for bone tissue regeneration", Ceramics International., Vol. 37, pp. 1575-1585, (2011).
3. Lee , S.-H., and Shin,H., "Matrices and scaffolds for delivery of bioactive molecules in bone and cartilage tissue engineering", Advanced Drug Delivery Reviews., Vol. 59, pp. 339-359, (2007).
4. Uemura, T., Dong, J., Wang, Y., Kojima, H., Saito, T., Iejima, D., Kikuchi, M., Tanaka, J., and Tateishi, T., "Transplantation of cultured bone cells using combinations of scaffolds and culture techniques", Biomaterials., Vol. 24, pp. 2277-2286, (2003).
5. Yoneda, M., Terai, H., Imai, Y., Okada, T., Nozaki, K., Inoue, H., Miyamoto, S., and Takaoka, K., "Repair of an intercalated long bone defect with a synthetic biodegradable bone-inducing implant", Biomaterials., Vol. 26, pp. 5145-5152, (2005).
6. Olszta, M.J., Cheng, X., Jee, S.S., Kumar, R., Kim, Y.-Y., Kaufman, M.J., Douglas, E.P., and Gower, L.B., "Bone structure and formation: A new perspective", Materials Science and Engineering: R: Reports., Vol. 58, pp. 77-116, (2007).
7. Sun, F., Zhou, H., and Lee, J., "Various preparation methods of highly porous hydroxyapatite/polymer nanoscale biocomposites for bone regeneration", Acta Biomaterialia., Vol. 7, pp. 3813-3828, (2011).
8. Nandakumar, A., Cruz, C., Mentink, A., Tahmasebi Birgani, Z., Moroni, L., van Blitterswijk, C., and
Habibovic, P., "Monolithic and assembled polymer–ceramic composites for bone regeneration", Acta
Biomaterialia., Vol. 9, pp. 5708-5717, (2013).
9. Chen, Q.Z., Wong, C.T., Lu, W.W., Cheung, K.M.C., Leong ,J.C.Y., and Luk, K.D.K., "Strengthening mechanisms of bone bonding to crystalline hydroxyapatite in vivo", Biomaterials., Vol. 25, pp. 4243-4254, (2004).
10. Rath, P.C., Besra,L., Singh, B.P., and Bhattacharjee, S., "Titania/hydroxyapatite bi-layer coating on Ti metal by electrophoretic deposition: Characterization and corrosion studies", Ceramics International., Vol. 38, pp. 3209-3216, (2012).
11. Swetha, M., Sahithi, K., Moorthi, A., Srinivasan, N., Ramasamy, K., and Selvamurugan, N., "Biocomposites containing natural polymers and hydroxyapatite for bone tissue engineering", International Journal of Biological Macromolecules, Vol. 47, pp. 1-4, (2010).
12. Zhou, H., and Lee, J., "Nanoscale hydroxyapatite particles for bone tissue engineering", Acta Biomaterialia, Vol. 7, pp. 2769-2781, (2011).
13. Balani, K., Anderson, R., Laha, T., Andara, M., Tercero, J., Crumpler, E., and Agarwal, A., "Plasma-sprayed carbon nanotube reinforced hydroxyapatite coatings and their interaction with human osteoblasts in vitro", Biomaterials, Vol. 28, pp. 618-624, (2007).
14. Sadat-Shojai, M., Atai, M., Nodehi, A., and Khanlar, L.N., "Hydroxyapatite nanorods as novel fillers for improving the properties of dental adhesives: Synthesis and application", Dental Materials., Vol. 26, pp. 471-482, (2010).
15. Sato, M., Sambito, M.A., Aslani, A., Kalkhoran, N.M., Slamovich, E.B., and Webster, T.J., "Increased osteoblast functions on undoped and yttrium-doped nanocrystalline hydroxyapatite coatings on titanium", Biomaterials, Vol. 27, pp. 2358-2369, (2006).
16. Topić, M., Ntsoane, T., and Heimann, R.B., "Microstructural characterisation and stress determination in as- plasma sprayed and incubated bioconductive hydroxyapatite coatings", Surface and Coatings Technology, Vol. 201, pp. 3633-3641, (2006).
17. Khosroshahi, M.E., Mahmoodi, M., and Saeedinasab, H., "In vitro and in vivo studies of osteoblast cell response to a titanium-6 aluminium-4 vanadium surface modified by neodymium:yttrium–aluminium–garnet laser and silicon carbide paper", Lasers Med Sci, Vol. 24, pp. 925-939, (2009).
18. Khosroshahi, M.E., Tavakoli, J., and Mahmoodi, M., "Analysis of Bioadhesivity of Osteoblast Cells on Titanium Alloy Surface Modified by Nd:YAG Laser", J Adhes., Vol. 83, pp. 151-172, (2007).
19. Aminzare, M., Eskandari, A., Baroonian, M.H., Berenov, Razavi Hesabi, A. Z., Taheri, M., and Sadrnezhaad, S.K., "Hydroxyapatite nanocomposites: Synthesis, sintering and mechanical properties",
Ceramics International, Vol. 39, pp. 2197-2206, (2013).
20. Andronescu, E., "Ceramics in substitutive and reconstructive surgery: Edited: P. Vincenzini, Faenza, Italy Materials Science Monographs Volume 69 Publisher: Elsevier Science Publisher, Sara Burgerhartstraat 25, P.O. Box 211, 1000 AE Amsterdam The Nederlands, (ISBN 0-444-89060-2)", Microelectronics Reliability., Vol. 33, pp. 767, (1993).
21. Kalmodia, S., Goenka, S., Laha, T., Lahiri, D., Basu, B., and Balani, K., "Microstructure, mechanical properties, and in vitro biocompatibility of spark plasma sintered hydroxyapatite–aluminum oxide–carbon nanotube composite", Materials Science and Engineering: C, Vol. 30, pp. 1162–1169, (2010).
22. Kratschmer, T., and Aneziris, C.G., "Amorphous zones in flame sprayed alumina–titania–zirconia
compounds", Ceramics International., Vol. 37, pp. 181-188, (2011).
23. Wen, C.E., Xu, W., Hu, W.Y., and Hodgson, P.D., "Hydroxyapatite/titania sol–gel coatings on titanium– zirconium alloy for biomedical applications", Acta Biomaterialia., Vol. 3, pp. 403-410, (2007).
24. Sopyan, I., Fadli, A., and Mel, M., "Porous alumina–hydroxyapatite composites through protein foaming – consolidation method", Journal of the Mechanical Behavior of Biomedical Materials., Vol. 8, pp. 86-98, (2012).
25. Cho, J., Schaab, S., Roether, J., and Boccaccini, A., "Nanostructured carbon nanotube/TiO2 composite coatings using electrophoretic deposition (EPD)", J Nanopart Res., Vol. 10, pp. 99-105, (2008).
26. Beherei, H.H., Mohamed, K.R., and El-Bassyouni, G.T., "Fabrication and characterization of bioactive glass (45S5)/titania biocomposites", Ceramics International., Vol. 35, pp. 1991-1997, (2009).
27. Ning, M., Xinfei, F., Xie, Q., and Yaobin, Z., "Ag–TiO2/HAP/Al2O3 bioceramic composite membrane: Fabrication, characterization and bactericidal activity", Journal of Membrane Science, Vol. 336, pp. 109–117, (2009).
28. Habibpanah, A.A., Pourhashem, S., and Sarpoolaky, H., "Preparation and characterization of photocatalytic titania– alumina composite membranes by sol–gel methods", Journal of the European Ceramic Society., Vol. 31, pp. 2867-2875, (2011).
29. Enayati-Jazi, M., Solati-Hashjin, M., Nemati, A., and Bakhshi, F., "Synthesis and characterization of
hydroxyapatite/titania nanocomposites using in situ precipitation technique", Superlattices and Microstructures., Vol. 51, pp. 877-885, (2012).
30. Viswanath, B., and Ravishankar, N., "Interfacial reactions in hydroxyapatite/alumina nanocomposites", Scripta Materialia., Vol. 55, pp. 863-866, (2006).
31. Wan, Y., Wu, H., Cao, X., and Dalai, S., "Compressive mechanical properties and biodegradability ofporous poly(caprolactone)/chitosan scaffolds", Polymer Degradation and Stability., Vol. 93, pp. 1736-1741, (2008).
32. David, B., Pizúrova, N., Schneeweiss, O., Klementova, M., Šantava, E., Dumitrache, F., Alexandrescu, R., and Morjan, I., "Magnetic properties of nanometric Fe-based particles obtained by laser-driven pyrolysis", Journal of Physics and Chemistry of Solids., Vol. 68, pp. 1152-1156, (2007).
33. Kokubo, T., Kim, H.M., Miyaji, F., Takadama, H., and Miyazaki, T., "Ceramic–metal and ceramic–polymer composites prepared by a biomimetic process", Composites Part A: Applied Science and Manufac., Vol. 30, pp. 405-409, (1999).
34. Kim, H., Kong, Y., Bae, C., Noh, Y., and Kim, H., "Sol–gel derived fluor-hydroxyapatite biocoatings on zirconia substrate", Biomaterials., Vol. 25, pp. 2919-2926, (2004).
35. Huang, Y., Hsiao, P., and Chai, H., "Hydroxyapatite extracted from fish scale: Effects on MG63 osteoblast-like cells", Ceramics International., Vol. 37 , pp. 1825-1831, (2011).
36. Kwok, C.T., Wong, P.K., Cheng, F.T., and Man, H.C., "Characterization and corrosion behavior of
hydroxyapatite coatings on Ti6Al4V fabricated by electrophoretic deposition", Applied Surface Science., Vol. 255, pp. 6736-6744, (2009).
37. Harle, J., Kim, H.-W., Mordan, N., Knowles, J.C., and Salih, V., "Initial responses of human osteoblasts to sol–gel modified titanium with hydroxyapatite and titania composition", Acta Biomaterialia., Vol. 2, pp. 547-556, (2006).
38. Salehi, S., and Fathi, M.H., "Fabrication and characterization of sol-gel derived hydroxyapatite/zirconia composite nanopowders with various yttria contents", Ceram Int., Vol. 36, pp. 1659-1667, (2010).
39. Cordeiro, D., Vasconcelos,L., and Costa, V., "Infrared Spectroscopy of Titania Sol-Gel Coatings on 316L Stainless Steel", Materials Sciences and Applications.,Vol. 2, pp. 1375-1382, (2011).
40. Kumara ,K., Singhb,A.K., and Rai, S.B., "Laser excited long lasting luminescence in CaAl2O4:Eu3+/Eu2++Nd3+phosphor",Spectrochimica Acta Part A: Molecular andBiomolecular Spectroscopy., Vol. 102, pp. 212-218, (2013).
41.Barinov, S.M., Rau, J.V., Cesaro, S.N., and Durisin, J., "Carbonate Release from Carbonated Hydroxyapatite in the Wide Temperature Rage", Journal of Materials Science Materials in Medicine., Vol. 17, pp. 597-604, (2006).
42. Kong, L., Gao,Y., Lu,G., Gong,Y., Zhao, N., and Zhang, X., "A study on the bioactivity of chitosan/nano- hydroxyapatite composite scaffolds for bone tissue engineering", European Polymer Journal., Vol. 42, pp. 3171-3179, (2006).
43. Fujibayashi, S., Neo, M., Kim, H.-M., Kokubo, T., and Nakamura, T., "A comparative study between in vivo bone ingrowth and in vitro apatite formation on Na2O–CaO–SiO2 glasses", Biomaterials., Vol. 24, pp. 1349-1356, (2003).
44. Ramila, A., and Vallet-Regı́, M., "Static and dynamic in vitro study of a sol–gel glass bioactivity", Biomaterials., Vol. 22, pp. 2301-2306, (2001).
45. Martinez, A., Izquierdo-Barba, I., and Vallet-Regi, M., "Bioactivity of a CaO−SiO2 Binary Glasses System", Chemistry of Materials., Vol. 12, pp. 3080-3088, (2000).
CAPTCHA Image