تولید کامپوزیت TiB2-TiC توسط سنتز احتراقی فعال‌شده با گرمایش ماکروویوی

نوع مقاله : علمی و پژوهشی

نویسندگان

1 دانشگاه ملایر

2 پژوهشگاه مواد و انرژی

3 علم و صنعت ایران

چکیده

هدف از این تحقیق ارائه روشی مناسب برای تولید کامپوزیت TiB2-TiC می‌باشد. بدین منظور از نتایج حاصل از سیستم­های TiO2-B2O3-Mg، TiO2-Mg-C و TiO2-B2O3-Mg-C استفاده شد. حرارت‌دهی در یک ماکروویو خانگی انجام و محصولات توسط دستگاه پراش اشعه ایکس و میکروسکوپ الکترونی مورد آنالیز قرار گرفت. ملاحظه شد که واکنش موجود در هر سه سیستم از نوع سنتز احتراقی فعال شده با موج ماکروویو است. حرارت‌دهی مخلوط 2TiO2:B2O3:9Mg:C منجر به تولید کامپوزیت TiB2-TiC-MgO شد. خالص‌سازی محصول، توسط اسیدشویی در اسید کلریدریک رقیق، انجام و کامپوزیت TiB2-TiC بدست آمد. در کلیه مراحل تحقیق از محاسبات ترمودینامیکی به‌منظور پیش‌بینی واکنش‌های محتمل استفاده گردید.

کلیدواژه‌ها


عنوان مقاله [English]

Fabrication of TiB2-TiC Composite through Microwave-Assisted Self-Propagating High-Temperature Synthesis (SHS) Method

نویسندگان [English]

  • aref ghanbari 1
  • morteza dastjerdi 1
  • aida faeghinia 2
  • masoud sakaki 1
  • mohammad sh. bafghi 3
1 Malayer University
2 Materials and Energy Research Center
3 Iran University of Science and Technology
چکیده [English]

The aim of this study was to propose a facile route for the fabrication of TiB2-TiC composite powder by microwave-assisted self-propagating high-temperature synthesis process. For this purpose, TiO2-B2O3-Mg, TiO2-Mg-C and TiO2-B2O3-Mg-C mixtures were heat treated in a domestic microwave oven. The products were characterized by XRD and SEM. Type of reactions in all investigated mixtures was SHS. Result of 2TiO2:B2O3:9Mg:C mixture showed successful formation of TiB2-TiC-MgO composite. Unwanted MgO compound was leached out by an HCl acid, yielding a pure TiB2-TiC powder. In this work, the possibility of chemical reactions was evaluated by thermodynamic calculations.

کلیدواژه‌ها [English]

  • TiB2-TiC Composite
  • Combustion Synthesis
  • Microwave Heating
1. Zou B., Shen P., Gao Z., Jiang Q., ''Combustion synthesis of TiCx–TiB2 composites with hypoeutectic, eutectic and hypereutectic microstructures'', Journal of the European Ceramic Society, Vol. 28, pp. 2275-2279, (2008).
2. Aminikia B., ''Investigation of the pre-milling effect on synthesis of nanocrystalline TiB2–TiC composite prepared by SHS method'', Powder Technology, Vol. 232, pp. 78-86, (2012).
3. Vallauri D., Atias Adrian I.C., Chrysanthou A., ''TiC–TiB2 composites: A review of phase relationships, processing and properties'', Journal of the European Ceramic Society, Vol. 28, pp. 1697-1713, (2008).
4. Huang X., Zhang L., Zhao Z., Yin C., ''Microstructure transformation and mechanical properties of TiC–TiB2 ceramics prepared by combustion synthesis in high gravity field'', Materials Science and Engineering A, Vol. 553, pp. 105-111, (2012).
5. Huang X., Zhao Z., Zhang L., Wu J., ''The effects of ultra-high-gravity field on phase transformation and microstructure evolution of the TiC–TiB2 ceramic fabricated by combustion synthesis'', International Journal of Refractory Metals and Hard Materials, Vol. 43, pp.1-6, (2014).
6. Wang D., Wang H., Sun Sh., Zhu X., Tu G., ''Fabrication and characterization of TiB2/TiC composites'', International Journal of Refractory Metals and Hard Materials, Vol. 45, pp. 95-101, (2014).
7. Liu G., Li J., Chen K., ''Combustion synthesis of refractory and hard materials: A review'', International Journal of Refractory Metals and Hard Materials, Vol. 39, pp. 90-102, (2013).
8. Sangshetti R.M., Hiremath V.A., Jali V.M., ''Combustion synthesis and structural characterization of Li-Ti mixed nanoferrites'', Bulletin of Materials Science, Vol. 34, pp. 1027-1031, (2011).
9. Novikov N.P., Borovinskaya I.P., Merzhanov A.G., ''Combustion processes in chemical technology and metallurgy'', Ed. Merzhanov, A.G., Chernogolovka, (1975).
10. Moore J.J., Feng H.J., ''Combustion synthesis of advanced materials: Part I. reaction parameters'', Progress in Materials Science, Vol. 39, pp. 243-273, (1995).
11. Jones D.A., Lelyveld T.P., Mavrofidis S.D., Kingman S.W., Miles N.J., ''Microwave heating applications in environmental engineering-a review'', Resources, Conservation and Recycling, Vol. 34, pp. 75-90, (2002).
12. شیخ شاب بافقی م.، سکاکی م.، کریم زاده بهنامی ا.، حمیدی م.، "سنتز احتراقی خود پیش‌رونده کاربید سیلیسیوم در سیستم SiO2-Mg-C توسط گرمایش مایکروویوی"، علم و مهندسی سرامیک، ص. 1-9، (1392).
13. امینی‌کیا ب.، طیبی‌فرد س.ع.، یوزباشی ا.ع.، "سنتز ترکیب کامپوزیتی TiB2-TiC به روش MACS"، پنجمین همایش مشترک انجمن مهندسین متالورژی و جامعه علمی ریخته‌گری ایران، (1390).
14. www.FactSage.com.
15. Lee J.H., Seo D.H., Won C.W., Borovinskaya I.P., Vershinnikov V.I., ''Combustion characteristics of WO3/Zn reaction system in SHS process'', Journal of Materials Science, Vol. 36, pp. 5311-5314, (2001).
16. قنبری ع.، "سنتز پودر نانو ساختار دی بورید تیتانیوم توسط حرارت‌دهی ماکروویوی"، پایان‌نامه کارشناسی‌ارشد، دانشگاه ملایر (1392).
17. Sakaki M., Karimzadeh Behnami A., Bafghi M.Sh., ''An investigation of the fabrication of tungsten carbide–alumina composite powder from WO3, Al and C reactants through microwave-assisted SHS process'', International Journal of Refractory Metals and Hard Materials, Vol. 44, pp. 142-147, (2014).
18. Aruna S.T., Mukasyan A.S., ''Combustion synthesis and nanomaterials'', Current Opinion in Solid State and Materials Science, Vol. 12, pp. 44-50, (2008).
19. Borovinskaya I.P., Ignat T.I., Vershinnikov V.I., Khurtina G.G., Sachkova N.V., ''Preparation of ultrafine boron nitride powders by self-propagating high-temperature synthesis'', Inorganic Materials, Vol. 39, pp. 588-93, (2003)
CAPTCHA Image