نوع مقاله : علمی و پژوهشی
نویسندگان
1 گروه مهندسی مواد و متالورژی، دانشکده مهندسی، دانشگاه فردوسی مشهد، مشهد، ایران.
2 تخصصی مهندسی بافت، گروه علوم تشریح و بیولوژی سلولی، دانشکده پزشکی، دانشگاه علوم پزشکی مشهد.
3 گروه علوم تشریح و بیولوژی سلولی، دانشکده پزشکی، دانشگاه علوم پزشکی مشهد.
چکیده
کلیدواژهها
موضوعات
عنوان مقاله [English]
نویسندگان [English]
In this study, the solution combustion method was used to synthesize a bioactive borate compound. XRD, FTIR, PSA analyses have been used to identify phase composition, bond determination, and particle size, respectively. In addition, MTT and cell migration assay were utilized to measure the biocompatibility of the particles. The synthesized particles not only were nano in size along with amorphous structure, but also showed positive effects on cell proliferation and migration. To attain bioactive compositional scaffolds, the borate amorphous compound was combined with hydroxyapatite nanoparticles at different weight percentages. Afterward, mixtures were sintered at 600, 650, and 700 oC for 0.5 and 1 h. XRD and DTS analyses were operated to evaluate the phase composition and mechanical strength. FESEM micrograph was evaluated to observe the crack path in addition to porosity and the effect of borate glass on the sintering process. The sample sintered at 700 oC for 1h containing 20% borate glass and 80% of hydroxyapatite, accounted for the highest mechanical strength at 4.87 ± 0.02 MPa. ICP-OES analysis of the sample containing 20% hydroxyapatite, which was sintered at 700 oC for 1 h, showed an increase in ion release compared to pure sintered hydroxyapatite after immersing in SBF for 7 days. Also, ion release of the borate glass has considerably been controlled and diminished by virtue of combining and sintering with hydroxyapatite nanoparticles. Furthermore, the mentioned composition is able to bond with soft tissue as well as hard tissue.
کلیدواژهها [English]
ارسال نظر در مورد این مقاله