تاثیر حجم فاز مایع روی توزیع نانولوله کربنی در زمینه مس–کروم در فرآیند آسیاکاری گلوله‏ای تر

نوع مقاله : علمی و پژوهشی

نویسندگان

دانشگاه تهران

چکیده

پودر نانوکامپوزیت مس- 1% کروم- 5% نانولوله ‏کربنی در سه سطح متفاوت از شدت انرژی آسیاکاری و در دو حجم متفاوت از فاز مایع تولید گردید. تحولات ساختاری و تشکیل محلول جامد توسط طیف‏سنج پراش پرتو ایکس و تغییرات میکروساختاری توسط میکروسکوپ الکترونی روبشی بررسی شد. همچنین خواص مکانیکی نمونه‏ها با روش میکروسختی‏سنجی ارزیابی شد. میانگین اندازه کریستالیت‏ها بسته به شرایط آسیاکاری و حجم فاز مایع در محدوده‏ی 94-44 نانومتر به دست آمد. آسیاکاری تر در سطوح انرژی بالاتر و حجم فاز مایع کمتر 10 میلی‏لیتر، روشی موثر در تولید نانوکامپوزیت زمینه مس با توزیع بهینه نانولوله‏های کربنی و کمترین آسیب وارد شده به آنها است. سختی حداکثر 88 ویکرز در این شرایط بهینه به دست آمد.

کلیدواژه‌ها


عنوان مقاله [English]

Pool Volume Influence on Carbon Nanotube Dispersion in Cu-Cr Matrix by Wet Ball Milling

نویسندگان [English]

  • Maryam Masroor
  • Saeed Sheibani
  • Abolghasem Ataie
University of Tehran
چکیده [English]

In this paper, the production of Cu-1wt%Cr-5wt%CNT nano-composites by wet milling process at three different levels of milling energy and two different pool volumes was investigated. The structural evolution and solid solution formation were evaluated by X-ray diffraction technique. The microstructure was characterized by scanning electron microscopy. The mechanical properties were also investigated by microhardness testing. The mean crystallite size was in the range of 44-94 nm depending on pool volume of milling medium and milling energy. It was found that wet milling at higher levels of milling energy and lower pool volumes of 10 ml can be a beneficial method of producing the nano-composite with the least damage introduction on homogeneously dispersed carbon nanotubes. Maximum hardness of 88 HV was obtained under optimum conditions.

کلیدواژه‌ها [English]

  • Wet milling
  • Carbon Nanotube
  • copper
  • Nano-Composite
1. Correia J., Davies H.C., Sellars C.M., "Strengthening in rapidly solidified age hardened Cu-Cr and Cu-Cr-Zr alloys", Acta Materialia, Vol. 45, No. 1, pp. 177-190, (1997).
2. Jin Y., Adachi K., Takeuchi T., Suzuki H.G., "Ageing characteristics of Cu–Cr in situ composite", Materials Science, Vol. 33, pp. 1333–1341, (1998).
3. Gao N., Huttunen-Saarivirta E., Tiainen T., Hemmila M., "Influence of prior deformation on the age hardening of a phosphorus-containing Cu-0.61 wt.% Cr alloy", Mateials Science and Engineering A, Vol. 342, pp. 270–278, (2003).
4. Akbarpour M.R., Salahi E., Alikhani Hesari F., Simchi A., Kim H.S., "Fabrication, characterization and mechanical properties of hybrid composites of copper using the nanoparticulates of SiC and carbon nanotubes", Materials science and engineering A, Vol. 572, pp. 83-90, (2013).
5. Cho S., Kikuchi K., Kawasaki A., "On the role of amorphous intergranular and interfacial layers in the thermal conductivity of a multi-walled carbon nanotube–copper matrix composite", Acta Materialia, Vol. 60, No. 2, pp. 726-736, (2012).
6. Kim K., Eckert J., Liu G., Prak J., Lim B., Hong S., "Influence of embedded-carbon nanotubes on the thermal properties of copper matrix nanocomposites processed by molecular-level mixing", Scripta Materialia, Vol. 64, No. 2, pp. 181-184, (2011).
7. Tsai P.C., Jeng Y.R., "Experimental and numerical investigation into the effect of carbon nanotube buckling on the reinforcement of CNT/Cu composites", Composites Science and Technology, Vol. 79, pp. 28-34, (2013).
8. Chu K., Jia C., Jiang L.K., Li W., "Improvement of interface and mechanical properties in carbon nanotube reinforced Cu–Cr matrix composite", Materials & Design, Vol. 45, pp. 407-411, (2013).
9. Kim B., Oh S., Yun H., Ki J., Kim C., Baik S., Lim B., "Synthesis of Cu–CNT Nanocomposite Powder by Ball Milling", Nanoscience and nanotechnology, Vol. 9, No. 12, pp.7393-7397, (2009).
10. Yadav T.P., Yadav R.M., Singh D.P., "Mechanical milling: a top down approach for the synthesis of nanomaterials and nanocomposites", Nanoscience and Nanotechnology, Vol. 2, No. 3, pp. 22-48, (2012).
11. Zhang S., Yuhua C., Bin W., Song R., Song H., Zhou J., Chen X., Liu J., Cao L., "Control of graphitization degree and defects of carbon blacks through ball-milling", RSC Advances, Vol. 4, No. 1, pp. 505-509, (2014).
12. Tao Z., Geng H., Yu K., Yang Z., Wang Y., "Effects of high-energy ball milling on the morphology and the field emission property of multi-walled carbon nanotubes", Materials Letters, Vol. 58, No. 27, pp. 3410-3413, (2004).
13. Zhou X., Dai Z., Bao J., Guo Y., "Wet milled synthesis of a Sb/MWCNT nanocomposite for improved sodium storage", Materials Chemistry A, Vol. 1, No. 44, pp. 13727-13731, (2013).
14. Ozkan A., Yekeler M., Calkaya M., "Kinetics of fine wet grinding of zeolite in a steel ball mill in comparison to dry grinding", Mineral Processing, Vol. 90, No. 1, pp.67-73, (2009).
15. Sotoudehnia M.M., Paúl A., "Dispersion of carbon nanotubes in iron by wet processing for the preparation of iron–carbon nanotube composites", Powder Technology, Vol. 258, pp. 1-5, (2014).
16. Williamson G., Hall W., "X-ray line broadening from filed aluminium and wolfram", Acta metallurgica, Vol. 1, No. 1, pp. 22-31, (1953).
17. Burgio N., Iasonna A., Magini M., Martelli S., Padella F., "Mechanical alloying of the Fe_Zr system Correlation between input energy and end products", Il Nuovo Cimento D, Vol. 13, pp. 459-476, (1991).
18. Magini M., Iasonna A., Padella F., "Ball milling: an experimental support to the energy transfer evaluated by the collision model", Scripta Materialia, Vol. 34, pp. 13-19, (1996).
19. Murty B., Mohan Rao M., Ranganathan S., "Milling maps and amorphization during mechanical alloying", Acta Metallurgica et Materialia, Vol. 43, pp. 2443-2450, (1995).
20. Suryanarayana C., "Mechanical alloying and milling", CRC Press Publication, (2004).
21. Guinier A., Dexter D.L., "X-Ray Studies of Materials", Interscience Publishers, (1963).
22. Wang L., Choi H., Myoung J.M., Lee W., "Mechanical alloying of multi-walled carbon nanotubes and aluminium powders for the preparation of carbon/metal composites", Carbon, Vol. 47, pp. 3427-3433, (2009).
CAPTCHA Image