بررسی ریزساختاری و خواص مکانیکی اتصالات حاصل از جوشکاری اصطکاکی اغتشاشی دوطرفه آلیاژ آلومینیوم 5083

نوع مقاله : علمی و پژوهشی

نویسندگان

دانشگاه صنعتی امیرکبیر

چکیده

در این تحقیق، تأثیر متغیرهای اصلی بر ریزساختار و خواص مکانیکی اتصالات حاصل از جوشکاری اصطکاکی اغتشاشی دوطرفه آلیاژ آلومینیوم 5083 به ضخامت 10 میلی‌متر پرداخته شده است. همچنین در شرایط بهینه سرعت سیر و چرخش، تأثیر طول پین در جوشکاری اصطکاکی اغتشاشی دوطرفه مورد بررسی قرار گرفته است. در سرعت سیر mm/min 80، افزایش سرعت چرخش تأثیری بر اندازۀ دانه در ناحیۀ اغتشاش ندارد. در این حالت دو عامل تبلور مجدد دینامیکی و حرارت ورودی ناشی از فرایند جوشکاری اثر یکدیگر را خنثی می­کنند؛ امّا در سرعت سیر  40، با افزایش سرعت چرخش ابزار، اثر حرارت ورودی غالب و این پدیده منجر به رشد دانه­ها در ناحیۀ اغتشاش شده است. همچنین با وجود کاهش حدوداً ده برابری اندازۀ دانه­ها در ناحیۀ اغتشاش در مقایسه با فلز پایه، تغییری در مقدار سختی در ناحیۀ اغتشاش مشاهده نگردید. بازده اتصال در بهترین شرایط اتصال به ترتیب در سرعت سیر و چرخش  80 و rpm 1000 و طول پینmm  6، برابر با 4/99 % است. در این حالت ازدیاد طول 9 % در مقایسه با فلز پایه بهبود پیدا کرده است.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of Metallurgical Structure and Mechanical Properties of Double-Sided Friction Stir Welded joint of AA5083 Plates

نویسندگان [English]

  • Behrooz Rahmatian
  • Seyyed Ehsan Mirsalehi
  • Kamran Dehghani
Amirkabir University of Technology
چکیده [English]

In this research, the effect of major welding parameters on microstructural evolutions and mechanical properties of double-sided friction stir welded thick 5083 aluminum alloy joints was investigated. For the traverse speed of 80 mm/min, the increase in the rotational speed does not have any effect on the average grain size. In this case, it can be said that the annealing grain growth and recrystallization effect counteract and neutralize each other. However, for the traverse speed of 40 mm/min, with increasing the rotational speed, the grain size increases due to the dominance of annealing grain growth effect. Grain size in the stir zone was decreased about ten time as compared with base metal; however, no considerable increase was observed in the hardness of the stir zone and the hardness profile remained almost uniform alongside the joint area. The best joint efficiency was equal to 99.4 % with the pin length of 6 mm and transverse and rotational speeds of 80 mm/min and 1000 rpm, respectively. Also, the elongation was improved about 9 % compared to the base metal.

کلیدواژه‌ها [English]

  • Double-sided Friction Stir Welding
  • aluminum alloy
  • Pin Length
  • Traverse Speed
  • Rotational speed
  • Microstructure
  • Mechanical properties
1. SALEHI, M., SAADATMAND, M., and AGHAZADEH MOHANDESI, J., "Optimization of process parameters for producing AA6061/SiC nanocomposites by friction stir processing", Transactions of Nonferrous Metals Society of China, Vol. 22, pp. 1055–1063, (2012).
2. Birol, Y., "Evolution of grain structure across joints in friction stir welded EN AW 5083 H111 plates during thermal exposure", Materials Science and Technology, Vol. 29, pp. 1283–1289, (2013).
3. Bahrami, M., Dehghani, K., and Besharati Givi, M. K., "A novel approach to develop aluminum matrix nano-composite employing friction stir welding technique", Materials & Design, Vol. 53, pp. 217–225, (2014).
4. Birol, Y. and Kasman, S., "Effect of welding parameters on microstructure and mechanical properties of friction stir welded EN AW 5083 H111 plates", Materials Science and Technology, Vol. 29, pp. 1354–1362, (2013).
5. Mohammadzadeh Jamalian, H., Farahani, M., Besharati Givi, M. K. et al., "Study on the effects of friction stir welding process parameters on the microstructure and mechanical properties of 5086-H34 aluminum welded joints", The International Journal of Advanced Manufacturing Technology, Vol. 83, pp. 611–621, (2016).
6. W. M. Thomas, E. D. Nicholas, J. C. Needham, M. G. Murch, Friction Stir Butt Welding, (1991).
7. Threadgill, P. L., Leonard, A. J., Shercliff, H. R. et al.," Friction stir welding of aluminium alloys", International Materials Reviews, Vol. 54, pp. 49–93, (2013).
8. Gopi, S. and Manonmani, K., "Predicting tensile strength of double side friction stir welded 6082-T6 aluminium alloy", Science and Technology of Welding and Joining, Vol. 17, pp. 601–607, (2013).
9. Threadgill, P. L., Ahmed, M., Martin, J. P. et al., "The Use of Bobbin Tools for Friction Stir Welding of Aluminium Alloys", Materials Science Forum, Vol. 638, pp. 1179–1184, (2010).
10. Chen, X.-G., da Silva, M., Gougeon, P. et al., "Microstructure and mechanical properties of friction stir welded AA6063–B4C metal matrix composites", Materials Science and Engineering: A, Vol. 518, pp. 174–184, (2009).
11. Maeda, M., Liu, H., Fujii, H. et al., "Temperature field in the vicinity of FSW-tool during friction stir welding of aluminium alloys", Welding in the World, Vol. 49, pp. 69–75, (2005).
12. Cabibbo, M., Forcellese, A., El Mehtedi, M. et al., "Double side friction stir welding of AA6082 sheets: Microstructure and nanoindentation characterization", Materials Science and Engineering: A, Vol. 590, pp. 209–217, (2014).
13. Rao, D., Huber, K., Heerens, J. et al., "Asymmetric mechanical properties and tensile behaviour prediction of aluminium alloy 5083 friction stir welding joints", Materials Science and Engineering: A, Vol. 565, pp. 44–50, (2013).
14. Brown, R., Tang, W., and Reynolds, A. P., "Multi-pass friction stir welding in alloy 7050-T7451: Effects on weld response variables and on weld properties", Materials Science and Engineering: A, 513-514, pp. 115–121, (2009).
15. Li, J. Q. and Liu, H. J., "Characteristics of the reverse dual-rotation friction stir welding conducted on 2219-T6 aluminum alloy", Materials & Design, Vol. 45, pp. 148–154, (2013).
16. Thomas, W. M., Im Norris, Staines, D. G. et al., "Friction stir welding—process developments and variant techniques", The SME Summit, Vol. 1, pp. 1–21, (2005).
17. Hejazi, I. and Mirsalehi, S. E., "Effect of pin penetration depth on double-sided friction stir welded joints of AA6061-T913 alloy", Transactions of Nonferrous Metals Society of China, Vol. 26, pp. 676–683, (2016).
18. Hirata, T., Oguri, T., Hagino, H. et al., "Influence of friction stir welding parameters on grain size and formability in 5083 aluminum alloy", Materials Science and Engineering: A, Vol. 456, pp. 344–349, (2007).
19. Paik, J. K., "Mechanical Properties of Friction Stir Welded Aluminum Alloys 5083 and 5383", International Journal of Naval Architecture and Ocean Engineering, Vol. 1, (2009).
20. Vijayan, S., Raju, R., and Rao, K., SR, "Multiobjective optimization of friction stir welding process parameters on aluminum alloy AA 5083 using Taguchi-based grey relation analysis", Materials and Manufacturing Processes, Vol. 25, pp. 1206–1212, (2010).
21. Kumar, A. R., Varghese, S., and Sivapragash, M., "A Comparative Study of the Mechanical Properties of Single and Double Sided Friction Stir Welded Aluminium Joints", Procedia Engineering, Vol. 38, pp. 3951–3961, (2012).
22. Mishra, R. S. and Ma, Z. Y., "Friction stir welding and processing", Materials Science and Engineering: R: Reports, Vol. 50, pp. 1–78, (2005).
23. H. Lombard, D.G. Hattingh, A. Steuwer, M.N. James, "Optimising FSW process parameters to minimise defects and maximise fatigue life in 5083-H321 aluminium alloy", Engineering Fracture Mechanics, pp. 341–354, (2008).
24. Zohoor, M., Besharati Givi, M. K., and Salami, P., "Effect of processing parameters on fabrication of Al–Mg/Cu composites via friction stir processing", Materials & Design, Vol. 39, pp. 358–365, (2012).
25. Barmouz, M., Givi, M. K. B., and Seyfi, J., "On the role of processing parameters in producing Cu/SiC metal matrix composites via friction stir processing: Investigating microstructure, microhardness, wear and tensile behavior", Materials characterization, Vol. 62, pp. 108–117, (2011).
26. Sato, Y. S., Park, S. H. C., and Kokawa, H., "Microstructural factors governing hardness in friction-stir welds of solid-solution-hardened Al alloys", Metallurgical and Materials Transactions A, Vol. 32, pp. 3033–3042, (2001).
27. Shigematsu, I., Kwon, Y.-J., Suzuki, K. et al., "Joining of 5083 and 6061 aluminum alloys by friction stir welding", Journal of materials science letters, Vol. 22, pp. 353–356, (2003).
28. Dolatkhah, A., Golbabaei, P., Givi, M. B. et al., "Investigating effects of process parameters on microstructural and mechanical properties of Al5052/SiC metal matrix composite fabricated via friction stir processing", Materials & Design, Vol. 37, pp. 458–464, (2012).
CAPTCHA Image