شبیه‌سازی و بهینه‌سازی حل عددی در تحلیل توزیع دما و تنشهای پسماند حرارتی در پوشش دولایه سد حرارتی La2Zr2O7/8YSZ به کمک حل المان محدود

نوع مقاله : علمی و پژوهشی

نویسندگان

1 علم و صنعت ایران

2 مالک اشتر

چکیده

توزیع دما و تنش‌های پسماند در پوشش سد‌حرارتی سه لایه (La2Zr2O7/8YSZ/NiCrAlY) تحت یک چرخه حرارتی ترکیبی و واقعی به کمک نرم افزار تجاری اباکوس شبیه‌سازی ‌شد. از تکنیک کاهش زمان حل به روش مقیاس‌دهی جرمی برای جلوگیری از اعوجاج بیش از حد مش-بندی، کاهش خطای عددی و واگرایی استفاده گردید. نتایج نشان داد که استفاده از روش افزایش جرم المان‌ها و جابجایی گره‌ها بصورت تطبیق‌پذیر باعث افزایش سرعت حل ‌می‌شود که دلیل آن بزرگتر شدن نموهای حلی در فرایند است. نتایج شبیه‌سازی نشان داد که تنش‌های پسماند در منطقه پوشش محافظ و نه زیرلایه تمرکز یافته است و این به نوبه خود باعث بهبود و افزایش عمر این محصول محافظ می‌باشد. تحلیل عددی نشان داد که بیشترین میزان اعوجاج بصورت عمده در ناحیه پوششهای سرامیکی متمرکز شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Finite Element Simulation of Temperature Distribution and Residual Stresses in New Thermal Barrier Coating La2Zr2O7/8YSZ

نویسندگان [English]

  • Nasim Nayebpashaee 1
  • Hossein Vafaeenezhad 1
  • hossein seyedein 1
  • mohammad reza aboutalebi 1
  • hossein sarpoolaki 1
  • seyed mohammad mehdi hadavi 2
1 Iran University of Science and Technology.
2 malek ashtar
چکیده [English]

An attempt was made to investigate the thermal and residual stress distribution in a novel three layer (La2Zr2O7/ 8YSZ/ NiCrAlY) during a real-like heating regime. The technique of reduction of solving time like mass scaling leads to a considerable reduction in running time while satisfying and not violating accuracy and converging criteria and constrains. Simulation results indicated that, most of damaging and harmful distortion and residual stress concentrate on ceramic top coats and this lead less harm and life time reduction in substrate.

کلیدواژه‌ها [English]

  • Thermal barrier coating
  • Residual stresses
  • Finite element simulation
  • Thermal shock
1. Vaßen R., Ophelia Jarligo M., Steinke T., Emil Mack D., Stöver D., “Overview on advanced thermal barrier coatings”, Surface & Coatings Technology, Vol. 205, pp. 938-942, (2010).
2. Tamarin Y., “Protective Coatings for Turbine Blades”, ASM International, Materials Park, Ohio, (2002).
3. Keyvani A., Saremi M., Heydarzadeh Sohi M.,”Oxidation resistance of YSZ-alumina composites compared to normal YSZ TBC coatings at 1100 ºC”, Journal of alloys and compounds, Vol. 509, pp. 8370-8377, (2011).
4. عرب سرهنگی س.، میرحبیبی ع.، عربی ح.، رستگاری س.، "بررسی خواص ریزساختاری و مکانیکی پوشش چند لایه سپرحرارتی کامپوزیتی زیرکونیا/آلومینا و پوشش دولایه زیرکونیایی اعمال شده به روش پاشش پلاسما"، فصلنامه سرامیک ایران، شماره 31، (1391).
5. Mohammadi M., Javadpour S., Kobayashi A., Jenabali Jahromi S.A., Shirvani K., "Thermal shock properties and microstructure investigation of LVPS and HVOF-CoNiCrAlYSi coatings on the IN738LC superalloy", Vacuum, Vol. 88, pp.124-129 (2013).
6. Cao X.Q., Vassen R., Stoever D., “Ceramic materials for thermal barrier coatings”, Journal of the European Ceramic Society, Vol. 24, pp. 1–10 (2004).
7. Lima C.R.C., Cinca N., Guilemany J.M., "Study of the high temperature oxidation performance of Thermal Barrier Coatings with HVOF sprayed bond coat and incorporating a PVD ceramic interlayer", Ceramics International, Vol. 38, pp. 6423-6429, (2012).
8. Khor K.A., Gu Y.W., "Thermal properties of plasma-sprayed functionally graded thermal barrier coatings", Thin Solid Films, Vol. 372, pp.104-113, (2000).
9. Di-Girolamo G., Blasi C., Brentari A., Schioppa M., "Microstructure and thermal properties of plasma-sprayed ceramic thermal barrier coatings", Studi & ricerche, Research papers, (2013).
10. رحیمی پور م.، مهدی پور م.، "لایه نشانی پلاسمایی MCrAlY/YSZ بر روی سوپر آلیاژ Inconel 738 و بررسی رفتار خوردگی داغ آن"، نشریه علمی پژوهشی علوم و مهندسی سطح، شماره 14، صفحات 75-67، (1391).
11. Wang L., Wang Y., Sun X.G., He J.Q., Pan Z.Y., Wang C.H., “A novel structure design towards extremely low thermal conductivity for thermal barrier coatings – Experimental and mathematical study”, Materials and design, Vol. 35, pp. 505-517, (2012).
12. جمالی ح.، مظفری نیا ر.، شجاع رضوی ر.، احمدی پیدانی ر.، "ارزیابی ظرفیت عایق سازی حرارتی پوشش های سد حرارتی پایه زیرکنیایی پاشش پلاسمایی شده"، مجله علمی پژوهشی مهندسی سطح، شماره14، صفحات 87-77 ، (1391).
13. زرگر ح.، سرپولکی ح.، رضایی ح.، "آشنایی با پوشش های سرامیکی محافظ حرارت و روشهای اعمال"، فصلنامه سرامیک ایران، شماره 6-5، صفحات 59-45، (1385).
14. Naga S.M., “Ceramic matrix composite thermal barrier coatings for turbine parts”, In book: Advances in Ceramic Matrix Composites, Woodhead Publishing Limited, Edition 1, Chapter 21, pp. 524-533, (2014).
15. Xu Z., He L., Mu R., He Sh., Huang G., Cao X., “Hot corrosion behavior of La2Zr2O7 with the addition of Y2O3 thermal barrier coatings in contacts with vanadate-sulfate salts”, Journal of Alloys and Compounds, Vol. 504, pp. 382-385, (2010).
16. Wang L., Wang Y., Zhang W.Q., Sun X.G., He J.Q., Pan Z.Y., Wang C.H., “Finite element simulation of stress distribution and development in 8YSZ and double-ceramic-layer La2Zr2O7/8YSZ thermal barrier coatings during thermal shock”, Applied Surface Science, Vol. 258, pp. 3540- 3551, (2012).
17. Zhang S., Zhao D., “Aerospace Materials Handbook”, CRC Press, 1st edition, (2012).
18. Smarsly W., "Coatings for Advanced Aero Engine Materials", presented at the 8th HIPIMS Conference, University Sheffield, UK, (2009).
19. Baker M., "Finite element simulation of interface cracks in thermal barrier coatings", Computational Materials Science, Vol. 64, pp. 79-83, (2012).
20. Saeedi B., Sabour A., Ebadi A., Khoddami A.M., “Influence of the Thermal Barrier Coatings Design on the Oxidation Behavior”, Journal of Materials Science and Technology, Vol. 25-4, pp. 499-507, (2009).
21. Khoddami A.M., Sabour A., Hadavi S.M.M., “Microstructure formation in thermally-sprayed duplex and functionally graded NiCrAlY/Yttria-Stabilized Zirconia coatings”, Surface & Coatings Technology, Vol. 201, pp.6019–6024, (2007).
22. Akbarpour S., Motamedian H.R., Abedian A., “Micromechanical FEM modeling of thermal stresses in functionally graded materials”, 26th International congress of the Aeronautical Sciences, Anchorage, Alaska, USA, (2008).
23. Tang F., Ajdelsztajn L., Kim G.E., Provenzano V., Schoenung J.M., “Effects of variations in coating materials and process conditions on the thermal cycle properties of NiCrAlY/YSZ thermal barrier coatings”, Materials Science and Engineering A, Vol. 425, pp. 94–106, (2006).
24. Watremetz B., Baietto-Dubourg M.C., Lubrecht A.A., “2D thermo-mechanical contact simulations in a functionally graded material: A multigrid-based approach”, Tribology International, Vol. 40, pp. 754–762, (2007).
25. Zhang X.C., Xu B.S., Wang H.D., Wu Y.X., “Modeling of the residual stresses in plasma-spraying functionally graded ZrO2/NiCoCrAlY coatings using finite element method”, Materials and Design, Vol. 27, pp. 308-315, (2006).
26. Ranjbar-far M., Absi J., Mariaux G., Smith D.S., “Crack propagation modeling on the interfaces of thermal barrier coating system with different thickness of the oxide layer and different interface morphologies, Materials and Design,Vol. 32, pp. 4961-4969, (2011).
CAPTCHA Image