بهینه سازی چقرمگی شکست و سختی به روش تاگوچی در ZrB2-SiCnp-ZrC-CNFs

نوع مقاله : علمی و پژوهشی

نویسندگان

1 گروه مهندسی مکانیک، واحد الیگودرز، دانشگاه آزاد اسلامی، الیگودرز، ایران.

2 دانشکده مهندسی مکانیک، دانشگاه تربیت معلم شهید رجایی، تهران، ایران.

3 گروه علوم و مهندسی مواد، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران.

چکیده

در این تحقیق، به بررسی اثر افزودن نانوذرات کاربید سیلیسیوم، کاربیدزیرکونیوم و نانوالیاف کربن در دماها و زمان های مختلف تف جوشی بر چقرمگی شکست و سختی سرامیک ZrB2 پرداخته شده است. با توجه به تعداد بالای نمونه های مورد نیاز، (چهار متغیر در سه سطح) به منظور بهینه سازی چقرمگی شکست و سختی از طراحی آزمایش به روش تاگوچی با آرایه L9 استفاده شد. سختی و چقرمگی شکست کامپوزیت های ساخته شده به روش تف جوشی با جرقه پلاسما، به روش های ماکرو ویکرز و اندازه گیری طول ترک مورد ارزیابی قرار گرفتند. نتایج نشان داد که نمونه 8 با ترکیب شیمیایی ZrB2-25Vol%SiC-15ZrC-10CNF تف جوشی شده در دمای 1875 درجه سانتی گراد به مدت 7 دقیقه دارای بیشترین میزان سختی ماکرو ویکرز (33±400 کیلوگرم بر میلی متر مربع) و چقرمگی شکست (4/±3/7 مگاپاسکال. جذر متر) است. هم چنین تحلیل واریانس (ANOVA) نشان داد که دما و زمان موثرترین متغیرها بر چقرمگی شکست (به ترتیب با سهم 84 درصد و 5/10 درصد) و سختی (به ترتیب با سهم 3/74 و 9/15 درصد) هستند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Optimization of Fracture Toughness and Hardness by Taguchi Method in ZrB2-SiCnp-ZrC-CNFs

نویسندگان [English]

  • Gholamreza Davoudi 1
  • mohamadmorad sheikhi 2
  • zohre balak 3
  • Shahrouz yousefzade 1
1 Department of Mechanical Engineering, Aligudarz Branch, Islamic Azad University, Aligudarz, Iran.
2 Faculty of Mechanical Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran.
3 Department of Materials Science and Engineering, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran.
چکیده [English]

In this research, the effect of adding silicon carbide nanoparticles, zirconium carbide, and carbon nanofibers at different sintering temperatures and times on fracture toughness and hardness of ZrB2 ceramics has been investigated. Due to the high number of required samples (four variables in three levels) to optimize the fracture toughness and hardness, the design of the experiment (DOE) by the Taguchi method was used. The hardness and fracture toughness of the composites fabricated by spark plasma sintering (SPS) were evaluated by macro-Vickers and crack length measurement methods respectively. The results showed that sample 8 with the chemical composition of ZrB2-25Vol%SiC-15ZrC-10CNF sintered at 1875°C for 7 minutes has the maximum amount of HV hardness (400±33) and fracture toughness (7.3±0.4) Mpa.m1/2. Also, analysis of variance (ANOVA) indicated that temperature and time are the most effective variables on fracture toughness (with contributions of 84% and 10.5% respectively) and hardness (with contributions of 74.3% and 15.9% respectively).

کلیدواژه‌ها [English]

  • Fracture toughness
  • hardness
  • SPS
  • Taguchi
  • ZrB2
  1. K. Sonber, T.S.R.Ch. Murthy, C. Subramanian, N. Krishnamurthy, et al., “Effect of CrSi2 and HfB2 addition on densification and properties of ZrB2”, International Journal of Refractory Metals and Hard Materials, vol. 31, no.2, pp. 125-131, (2012). https://doi.org/10.1016/j.ijrmhm.2011.10.001
  2. G. Aguirre, C. L. Cramer, E. Cakmak , M. J. Lance , R. A. Lowden, “Processing and microstructure of ZrB2–SiC composite prepared by reactive spark plasma sintering”, Results in Materials, vol.11, no.1, pp. 200-217, (2021).https://doi.org/10.1016/j.rinma.2021.100217
  3. Farahbakhsh, Z. Ahmadi and M. Shahedi Asl, Densification, “microstructure and mechanical properties of hot pressed ZrB2–SiC ceramic doped with nano-sized carbon black”, Ceramics International, vol. 43, no. 11, pp. 8411-8417. (2017). https://doi.org/10.1016/j.ceramint.2017.03.188
  4. Shahedi Asl, Y. Pazhouhanfar , A. Sabahi Namini , S. Shaddel and M. Fattahi, “Role of graphite nano-flakes on the characteristics of ZrB2-based composites reinforced with SiC whiskers”, Diamond and Related Materials, vol. 10, no.5, pp. 1077-1086, (2020). https://doi.org/10.1016/j.diamond.2020.107786
  5. W. Neuman, G.E. Hilmas and W.G. Fahrenholtz, “Processing, microstructure, and mechanical properties of large-grained zirconium diboride ceramics”, Materials Science and Engineering: A, vol. 1, no.2, pp. 196-204, (2016). https://doi.org/10.1016/j.msea.2016.06.017
  6. R. Derakhshandeh, A. Fazili , R. Behjat Golenji , F. Alipour , M. J. Eshraghi and L. Nikzad, “Fabrication of (TixZr1−x)B2-(ZrxTi1−x)N composites by reactive spark plasma sintering of ZrB2-TiN ”, Journal of Alloys and Compounds, vol. 10, no.5, pp. 887-899, (2021). https://doi.org/10.1016/j.jallcom.2021.161403
  7. Wang, Z. Wu and G. Shi, “The oxidation behaviors of a ZrB2–SiC–ZrC ceramic”, Solid State Sciences, vol. 13, no.3, pp. 534-538, (2011). https://doi.org/10.1016/j.solidstatesciences.2010.12.022
  8. Shahedi Asl, I. Farahbakhsh and B. Nayebi, “Characteristics of multi-walled carbon nanotube toughened ZrB2–SiC ceramic composite prepared by hot pressing”, Ceramics International, vol. 42, no.1, pp. 1950-1958, (2016). https://doi.org/10.1016/j.ceramint.2015.09.165
  9. Shahedi Asl, B. Nayebi and M. Shokouhimehr, “TEM characterization of spark plasma sintered ZrB2–SiC–graphene nanocomposite”, Ceramics International, vol. 44, no.13, pp. 15269-15273, (2018).
  10. https://doi.org/10.1016/j.ceramint.2018.05.170
  1. Monteverde, C. Melandri and S. Guicciardi, “Microstructure and mechanical properties of an HfB2+30vol.% SiC composite consolidated by spark plasma sintering”, Materials Chemistry and Physics, vol. 100, no.2, pp. 513-519, (2006). https://doi.org/10.1016/j.matchemphys.2006.02.003
  2. Davoudi, M. M. Sheikhi, Z. Balak, S. Yousefzadeh, “Applying the Taguchi to Optimization the densification, and flexural strength of ZrB2–SiC–ZrC-CNFs”, Materials Chemistry and Physics, vol. 301, no.1, pp. 127625-127633, (2023). https://doi.org/10.1016/j.matchemphys.2023.127625
  3. Shahedi Asl, B. Nayebi, Z. Ahmadi, M. Jaberi Zamharir and M. Shokouhimehr, “Effects of carbon additives on the properties of ZrB2–based composites, A review", Ceramics International, vol. 44, no.7, pp. 7334-7348, (2018). https://doi.org/10.1016/j.ceramint.2018.01.214
  4. Zhou, Z. Wang, X. Sun and J. Han, “Microstructure, mechanical properties and thermal shock resistance of zirconium diboride containing silicon carbide ceramic toughened by carbon black”, Materials Chemistry and Physics, vol. 122, no.2, pp. 470-473, (2010). https://doi.org/10.1016/j.matchemphys.2010.03.028
  5. Rezapour, Z. Balak, “Fracture toughness and hardness investigation in ZrB2–SiC–ZrC composite”, Materials Chemistry and Physics, vol. 241, no.4, pp. 122284-122396, (2020). https://doi.org/10.1016/j.matchemphys.2019.122284.
  6.  Nasiri, M. Mashhadi and A. Abdollahi, “Effect of short carbon fiber addition on pressureless densification and mechanical properties of ZrB2–SiC–Csf nanocomposite”, International Journal of Refractory Metals and Hard Materials, vol. 51, no.2, pp. 216-231, (2015).https://doi.org/10.1016/j.ijrmhm.2015.04.005
  7. Balak, M. Zakeri, M. Rahimipour and E. salahi, “Taguchi design and hardness optimization of ZrB2-based composites reinforced with chopped carbon fiber and different additives and prepared by SPS”, Journal of Alloys and Compounds, vol. 639, no.1, pp. 617-625, (2015). https://doi.org/10.1016/j.jallcom.2015.03.131
CAPTCHA Image