نوع مقاله : علمی و پژوهشی
نویسندگان
دانشکدۀ مهندسی مواد و متالورژی، دانشگاه امیرکبیر تهران.
چکیده
کلیدواژهها
موضوعات
عنوان مقاله [English]
نویسندگان [English]
The present study aims to create an artificial bone from metal foam with a strength close to that of natural bone. The metal foam was made of A356 American alloy and a specific amount of Copper. As the aluminum alloy foam undergoes aging, the desired compressive strength and toughness can be achieved. Four aging cycles were conducted with durations of 2, 7, 15, and 24 hours and all under the temperature of 165 Celsius degrees. The results from the electron microscope analysis revealed that Copper particles, which were dissolved in the thin walls of solid bubbles in the Al-Si-Cu foam, were able to create the metastable and very small phases of and by decomposing the Copper-rich GP zones. The number of these metastable phases grows during the aging process and this causes the strength of the artificial bone to increase. To validate the quantities of compressive strength and also to compare them with those of a fresh shin bone, the artificial bone samples were obtained from the aging cycles. These samples, along with a sheep's fresh entire shin bone, were measured and compared in terms of resistance to compressive loading. The results showed that the strength and toughness of the sample which underwent a 15-hour aging cycle (165 Celsius degrees) were 30 MPa and 13.60 MJ/m3, respectively –close to those of a natural bone that equate to 13 MPa and 12.00 MJ/m3. The results also revealed that the sample’s strength declines again as the aging process is further prolonged.
کلیدواژهها [English]
ارسال نظر در مورد این مقاله