ارزیابی ریزساختار، ترکیب فازی و خواص پوشش زیرکونیا اعمال شده بر روی سطح فولاد کربنی API5L به عنوان تابعی از شرایط مختلف پخت

نوع مقاله : علمی و پژوهشی

نویسندگان

1 دانشگاه یزد

2 یزد

چکیده

در این تحقیق پوشش چهار لایه ای زیرکونیا با استفاده از پیش‌ماده زیرکونیوم پروپوکساید از طریق فرآیند سل-ژل بر روی سطح فولاد کربنی API5L اعمال گردید. برای نمونه های گروه اول، بعد از هر لایه پوشش و برای نمونه های گروه دوم پس از اعمال چهار لایه پوشش فرآیند پخت به مدت یک ساعت در دمای مورد نظر انجام گرفت (350، 450 و 550 درجه سانتیگراد). برای تعیین تحولات فیزیکو شیمیایی و تغییرات فازی ایجاد شده در ضمن عملیات حرارتی بر روی ژل بدست آمده از آنالیز حرارتی افتراقی و تفرق اشعه ایکس کمک گرفته شد. برای اطلاع از عوامل یونی و نوع پیوندهای موجود در ژل از آزمون FTIR و برای مشاهدات ریزساختاری از میکروسکوپ الکترونی روبشی استفاده گردید. خواص پوشش توسط آزمایشات خوردگی الکتروشیمیایی، میکروسختی و استحکام چسبندگی مورد ارزیابی قرار گرفت. برای نمونه های گروه اول در دمای 450 درجه سانتیگراد و برای نمونه های گروه دوم در دمای 550 درجه سانتیگراد ریزساختاری همگن تر و مقاومت به خوردگی بالاتری حاصل می شود. برای هر دو گروه از نمونه ها بالاترین میزان میکروسختی و کمترین میزان استحکام چسبندگی در دمای پخت 550 درجه سانتیگراد حاصل می شود.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of Microstructure, Phase Composition and Properties of Four Layer Zirconia Coating on API5L Steel as a Function of Different Sintering Condition

نویسندگان [English]

  • maryam Jafari 1
  • mahdi kalantar 2
1 yazd university
2 yazd university
چکیده [English]

In this study four layers of zirconia coating were applied on the surface of API5L steel samples by sol-gel method using zirconium isopropoxide precursor. In the first group of samples, after each layer of coating and for the second group after four-layer coating, heat treatment (calcination and sintering) were carried out at the desired temperatures (350-550 C). X-ray diffraction and differential thermal analysis were used to evaluate the physico-chemical reactions and phase changes in the obtained gels caused by heat treatment. Microstructural features, adhesion strength and corrosion resistance of the coated samples were determined by scanning electron microscope, microhardness, adhesion and electrochemical corrosion testing, respectively. The results showed that by increasing the sintering temperature from 350 to 550 C, the structure evolved from amorphous to crystalline state. For the first group of samples, sintering at 450 C and for second group, sintering at 550 C offered a more homogenous microstructure and improved corrosion resistance.

کلیدواژه‌ها [English]

  • Zirconia Coating
  • Sol-gel, Microstructure
  • Composition Phase
  • Properties
  1. Li H., Liang K., Mei L., Gu S., "Oxidation resistance of mild steel by zirconia sol-gel coatings", Materials Letters, Vol. 51, pp. 320-324, (2001).
  2. Uhlmann I., Hawelka D., Hildebrandt E., Pradella J., Rödel J., "Structure and mechanical properties of silica doped zirconia thin films", Vol. 527, pp. 200–204, (2013).
  3. Adraider Y., Pang Y.X., Nabhani F., Hodgson S.N., Sharp M.C., Waidh A., "Fabrication of zirconium oxide coatings on stainless steel by a combined laser/sol–gel technique", Ceramics International, Vol. 39, pp. 9665–9670, (2013).
  4. Diaz-Parralejo A., Macias-Garcia A., Sanchez-Gonzalez J., Diaz-Diez M., Eduardo Á., Cuerda-Correa M., "A novel strategy for the preparation of yttria-stabilized zirconia powders Deposition and scratching of thin films obtained by the sol–gel method", Journal of Non-Crystalline Solids, Vol. 357, pp. 1090–1095, (2011).
  5. Haibin L., Kaiming L., Shouren G., "Oxidation resistance of mild steel by zirconia sol gel coatings", Materials Science and Engineering, Vol. 341, pp. 87-91, (2003).
  6. Baron Y., Ruiz S., "Sol–gel coating to reduce 1.25Cr–0.5Mo steel oxidation at 700 ˚C: Catalyst type effect", Corrosion Science, Vol. 53, pp. 1060-1065, (2011).
  7. Domnguez Crespo M.A., Garca Murillo A., Torres-Huerta A.M., Yanez-Zamora C., Carrillo-Romo F., "Electrochemical behavior of ceramic yttria stabilized zirconia on carbon steel synthesized via sol–gel process", Journal of Alloys and Compounds, Vol. 483, pp. 437-441, (2009).
  8. Perdomol F., Avaca L.A., Aegerter M.A., Lima P., "Oxygen-free deposition of ZrO2 sol-gel films on mild steel for corrosion protection in acid medium", Journal Materials Science Letters, Vol. 17, pp. 295-298, (1998).
  9. میرکاظمی ن.، مقصودی پور ا.، تمیزی فر م.، باغشاهی س.، "ساخت پوشش سرامیکی زیرکونیای پایدار شده با ایتریا بر پایه متخلخل به روش سل ژل و تکنیک غوطه وری: بررسی اثر زمان غوطه وری بر ضخامت پوشش"، نهمین کنگره سرامیک ایران، 25 و 26 اردیبهشت، (1392).
  10. Tiwari S.K., Tripathi M., Singh R., "Electrochemical behavior of zirconia based coatings on mild steel prepared by sol–gel method", Corrosion Science, Vol. 63, pp. 334-341, (2012).
  11. Girolamo G. Blasi D., Pagnotta C., Schioppa M., "Phase evolution and thermophysical properties of plasma sprayed thick zirconia coatings after annealing", Ceramics International, Vol. 36, pp. 2273-2280, (2010).
  12. Soo M.T., Prastomo N., Matsudab A., Kawamurab G., Muto H., Mohd A.F., Lockman Z., Cheong K., "Elaboration and characterization of sol–gel derived ZrO2 thin films treated with hot water", Applied Surface Science, Vol. 258, pp. 5250-5258, (2012).
  13. Santos V., Zani M., Bergmann C.P., Honemberger J.M., "Corelation between thermal treatment and tetragonal / monoclinic nano structure zirconia powder obtained by sol-gel process", Review Advanced Materials Science, Vol. 17, pp. 62-70, (2008).
  14. MoraAn-Pinedaa M., Castilloa S., LoApezb T., GoAmezb R., Borboac C., Novaro O., “Synthesis, Characterization and catalytic activity in the reduction of NO by CO on alumina zirconia sol gel derived mixed oxides", Applied Catalysis B: Environmental, Vol. 21, pp79-88, (1999).
  15. Garvie RC, "Stabilization of the tetragonal structure in zirconia microcrystals", Journal of Physical Chemistry, Vol. 82, pp. 218, (1978).
  16. نوری ا.، شاهمیری م.، رضایی ح.، "تاثیر عملیات حرارتی بر تحولات فازی، تغییرات مورفولوژیکی و اندازه نانو پودرهای زیرکونیایی سنتز شده با روش سل ژل"، فصلنامه فرآیندهای نوین در مواد، سال ششم، شماره دوم، (1391).
  17. کلانتر م.، "سرامیک های سازه ای دما بالا"، انتشارات دانشگاه یزد، ص 451، (1387).
  18. MoraAn-Pinedaa M., Castilloa S., LoApezb T., Borboac R., Novaro O., “Synthesis, Characterization and catalytic activity in the reduction of NO by CO on alumina zirconia sol gel derived mixed oxides", Applied Catalysis B: Environmental, Vol. 21, pp. 79-88, (1999).
  19. Hao Y., Li J., Yang X., Wang X., Lu L., "Preparation of ZrO2–Al2O3 composite membranes by sol–gel process and their characterization", Materials Science and Engineering A, Vol. 367, pp. 243-247, (2004).
  20. Brenier R., Gagnaire A., "Densification and aging of ZrO2 films prepared by sol. gel", Thin Solid Films, Vol. 392, pp. 142-148, (2001).
  21. Atik M., Kha C.R., Delimaneto P., Avaca L.A., Aegerter M.A., Zarzycki j., "Protection of 316L stainless steel by zirconia sol gel coatings in 15%H2SO4 solutions", Vol. 474, pp. 178-181, (2009).
  22. Markowitz A.E., "Optimization of sol-gel composite films through chemical and thermal processing", Master of Science Thesis, Queen's University Kingston, Ontario, Canada May, (1998).
CAPTCHA Image