کامپوزیت‌سازی درجای Al/Al3Mg2 بر سطح آلومینیوم 1050 توسط فرایند اصطکاکی اغتشاشی

نوع مقاله : علمی و پژوهشی

نویسندگان

دانشگاه یزد

چکیده

به منظور اصلاح ساختار و بهبود خواص مکانیکی سطحی آلیاژ آلومینیوم 1050، کامپوزیت آلومینیوم-منیزیوم توسط فرایند اصطکاکی اغتشاشی بر سطح آلیاژ مذکور ایجاد شد. مطالعات ساختاری نشان داد که با اعمال یک پاس بر زیرلایه آلومینیوم دریافتی، دانه‌بندی از حالت ستونی و کشیده به دانه‌های هم‌محور تبدیل می‌شود. مطالعات انجام شده توسط میکروسکوپ الکترونی روبشی مجهز به آنالیز نقطه‌ای و آنالیز فازی پراش اشعه ایکس حاکی از تشکیل ترکیب بین فلزی Al3Mg2 در نمونه‌ی کامپوزیت شده با چهارپاس بود. مطالعات انجام شده دلالت بر تاثیر قابل ملاحظه‌ی تعداد پاس‌های فرایند و استفاده از پودر منیزیوم بر دانه‌بندی ناحیه‌ی کامپوزیت شده داشت. به عبارت دیگر متوسط اندازه دانه‌ی ناحیه کامپوزیت شده از 1050 میکرومتر در نمونه‌ی کامپوزیت شده با یک پاس بدون پودر به 26 میکرومتر در نمونه‌ی کامپوزیت شده با چهار پاس حاوی پودر منیزیوم، کاهش یافت. بررسی‌های استحکام کششی نیز حاکی از بهبود %70 استحکام کششی نمونه‌های کامپوزیت شده در مقایسه با استحکام کششی فلزپایه بود.

کلیدواژه‌ها


عنوان مقاله [English]

In-situ Composition of Al/Al3Mg2 on Al-1050 Surface by Friction Stir Processing

نویسندگان [English]

  • Masoud Mosallaee Pour
  • Shahin Arshadi Rastabi
yazd university
چکیده [English]

In order to improve the structural and mechanical properties of Al-1050, Al/Mg composite was processed on the surface of this alloy by using friction stir processing. Structural studies showed that one pass FSP on the as-received aluminum substrate changed the grain shape from stretched grains to equiaxed. Microstructural studies by scanning electron microscope equipped with EDS spot analysis and X-ray diffraction phase analysis revealed the formation of Al3Mg2 intermetallic compound in the 4-pass FS-processed sample. Microstructural studies revealed the significant effect of number of FSP passes and using of Mg particles on the grain size of the FSP area, i.e. grain size in this area changed from 5010 μm in the FS-processed sample with one pass and without Mg particles to 62 μm in FS-Processed sample with four passes and Mg particles. Tensile strength test showed a 70% improvement of tensile strength of the composite compared to that of the base metal.

کلیدواژه‌ها [English]

  • FSP
  • Composite
  • Al
  • Mg
  • Hardness
  • strength
1. Mehta D.S., Masood S.H., Song, W.Q. “Investigation of wear properties of magnesium and aluminum alloys for automotive applications”, Journal of Materials Processing Technology, Vol. 155, pp. 1526-1531, (2004).‏
2. Qin Q.D., Zhao Y.G., Zhou W. “Dry sliding wear behavior of Mg 2 Si/Al composites against automobile friction material”, Wear, Vol. 264, No. 7, pp. 654-661, (2008).‏
3. Majumdar J.D., Kumar A., Li L., “Direct laser cladding of SiC dispersed AISI 316L stainless steel”, Tribology International, Vol. 42, No. 5, pp. 750-753,‏ (2009).
4. Hwang J.R., Fung C.P. “Effect of electron beam surface hardening on fatigue crack growth rate in AISI 4340 steel”, Surface and Coatings Technology, Vol. 80, No. 3, pp. 271-278, (1996).‏
5. Yuan-Fu L., De-Qiang C., Jian-Min H., Hao W., Xiang-Yang X., Si-Ze Y. “Microstructure and Properties of Cr3Si/γ-Fe Composite Coating Prepared by Plasma Transferred Arc Cladding Technique”, Chinese Physics Letters, Vol. 26, No, 9, 095202, (2009).‏
6. Dyuti S., Mridha S., Shaha S.K., “Surface modification of mild steel using tungsten inert gas torch surface cladding”, American Journal of Applied Sciences, Vol. 7, No. 6, pp. 815,‏ (2010)
7. Zhang Q., Xiao B.L., Wang D., Ma, Z.Y. “Formation mechanism of in situ Al 3 Ti in Al matrix during hot pressing and subsequent friction stir processing”, Materials Chemistry and Physics, Vol. 130, No. 3, pp. 1109-1117, (2011).‏
8. Mishra R.S., Ma Z.Y., “Friction stir welding and processing”, Materials Science and Engineering: R: Reports, Vol. 50, No. 1, pp. 1-78, (2005).‏
9. Charit I., Mishra R.S., Mahoney M.W., “Multi-sheet structures in 7475 aluminum by friction stir welding in concert with post-weld superplastic forming”, Scripta Materialia, Vol. 47, No. 9,
pp. 631-636, (2002).‏
10. Mishra R.S., Mahoney M.W., “Friction stir processing: a new grain refinement technique to achieve high strain rate superplasticity in commercial alloys”, Materials Science Forum, Vol. 357, pp. 507-514,‏ (2001, January).
11. Anvari S.R., Karimzadeh F., Enayati M.H., “A novel route for development of Al–Cr–O surface nano-composite by friction stir processing”, Journal of Alloys and Compounds, Vol. 562, pp. 48-55, (2013). ‏
12. Ke L., Huang C., Xing L., Huang K., “Al–Ni intermetallic composites produced in situ by friction stir processing”, Journal of Alloys and Compounds, Vol. 503, No. 2, pp. 494-499, (2010).
13. Lee I.S., Kao P.W., Chang C.P., Ho N.J., “Formation of Al–Mo intermetallic particle-strengthened aluminum alloys by friction stir processing”, Intermetallics, Vol. 35, pp. 9-14, (2013).
14. You G.L., Ho N.J., Kao P.W., “Aluminum based in situ nanocomposite produced from Al–Mg–CuO powder mixture by using friction stir processing”, Materials Letters, Vol. 100, pp. 219-222, (2013). ‏
15. Zhang Q., Xiao B.L., Ma Z.Y., “In situ formation of various intermetallic particles in Al–Ti–X (Cu, Mg) systems during friction stir processing”, Intermetallics, Vol. 40, pp. 36-44,‏ (2013).
16. معطوفی ف، "کلید آلومینیوم و آلیاژهای وابسته"، انتشارات فدک ایساتیس، (1385).
17. دهقان م، "بهبود خواص سطحی آلیاژ آلومینیوم 1100 توسط اصلاح ریزساختاری آن به کمک فرایند اصطکاکی اغتشاشی"، دانشگاه یزد، (1392).
18. Porter D.A., Easterling K.E., Sherif M., “Phase Transformations in Metals and Alloys”, CRC press, (2011).‏
19. Humphreys F.J., “The nucleation of recrystallization at second phase particles in deformed aluminium”, Acta Metallurgica, Vol. 25, No. 11, pp. 1323-1344, (1977).
20. Morishige T., Hirata T., Uesugi T., Takigawa Y., Tsujikawa M., Higashi K., “Effect of Mg content on the minimum grain size of Al–Mg alloys obtained by friction stir processing”, Scripta Materialia, Vol. 64, No. 4, pp. 355-358,‏ (2011).
21. Humphreys F.J., Hatherly M., “Recrystallization and Related Annealing Phenomena”, Elsevier, Oxford, (2004).
22. Doherty R.D., Hughes D.A., Humphreys F.J., Jonas J.J., Jensen D.J., Kassner M.E., Rollett A.D., “Current issues in recrystallization: a review”, Materials Science and Engineering: A, Vol. 238, No. 2, pp. 219-274, (1997).‏
23. McQueen H.J., Blum W., “Dynamic recovery: sufficient mechanism in the hot deformation of Al
(< 99.99)”, Materials Science and Engineering: A, Vol. 290, No. 1, pp. 95-107, (2000).‏
24. Soliman M.S., “Effect of Cu concentration on the high-temperature creep behavior of Al-Cu solid solution alloys”, Materials Science and Engineering: A, Vol. 201, No. 1, pp. 111-117, (1995). ‏
25. Martin J.W., Doherty R.D., Cantor B., “Stability of microstructure in metallic systems” Cambridge University Press,‏ (1997).
26. داوسون گ.، ترجمه‌ی علی حائریان اردکانی چاپ اول، "متالورژی پودر"، مرکز نشر دانشگاهی، (1372).
27. فریتس وی. ل.، ترجمه‌ی دکتر پروین عباچی چاپ اول، "متالورژی پودر"، موسسه انتشارات علمی، (1381).
28. Zohoor M., Givi M.B., Salami P., “Effect of processing parameters on fabrication of Al–Mg/Cu composites via friction stir processing”, Materials & Design, Vol. 39, pp. 358-365, (2012).‏
29. Hirata T., Oguri T., Hagino H., Tanaka T., Chung S.W., Takigawa Y., Higashi K., “Influence of friction stir welding parameters on grain size and formability in 5083 aluminum alloy”, Materials Science and Engineering: A, Vol. 456, No. 1, pp. 344-349, (2012).‏
30 دیتر ج. ای.، مترجم: شهره شهیدی، "متالورژی مکانیکی" ، چاپ سوم، ویرایش اول، مرکز نشر دانشگاهی. (1387).
31. Zhang Q., Xiao B.L., Wang W.G., Ma Z.Y., “Reactive mechanism and mechanical properties of in situ composites fabricated from an Al–TiO2 system by friction stir processing”, Acta Materialia, Vol. 60, No. 20, pp. 7090-7103, (2012).‏
32. Rollett A., Humphreys F.J., Rohrer G.S., Hatherly M., “Recrystallization and related annealing phenomena”, Elsevier, (2004).
CAPTCHA Image