اثر سیلسیم بر تشکیل ترکیبات بین فلزی آلومیناید تیتانیوم از AlوTiO2

نوع مقاله : علمی و پژوهشی

نویسندگان

1 گروه مهندسی مواد دانشگاه صنعتی بیرجند

2 گروه مهندسی عمران، دانشگاه صنعتی بیرجند

چکیده

در این مقاله سعی شد تا تاثیر افزایش سیلسیم بر واکنش‌های تولید ترکیبات آلومیناید تیتانیم از مواد اولیه TiO2 و Al بررسی شود. سیلسیم از یک طرف دارای یوتکیتک با آلومینیم است و می‌تواند دمای ذوب آن را کاهش دهد که این امر به دلیل تعیین کننده بودن مرحله ذوب آلومینیم در تشکیل ترکیبات آلومیناید تیتانیم اثرگذار باشد. از طرف دیگر به دلیل تولید ترکیب Ti5Si3 قادر است در افزایش مقاومت به اکسیداسیون ترکیبات و کامپوزیت‌های حاوی آلومیناید تیتانیم موثر باشد. لذا در این تحقیق سعی شد با افزودن مقادیر متفاوتی از سیلسیم پودری به مواد اولیه پودری TiO2 وAl و حرارت دادن آن در دمای ºC950 بررسی شود که آیا افزودن سیلسیم پودری می‌تواند به تشکیل فاز مقاوم در برابر اکسیداسیون Ti5Si3 کمک کند. همچنین این فاز در چه نسبتی از مواد اولیه و با چه مورفولوژی ایجاد می‌‌شود. نتایج نشان داد که وقتی سیلسیم در مقادیر کم به سیستم افزوده می‌شود (نسبت 1/0) نه تنها تاثیر مثبتی بر انجام واکنش‌ها ندارد که جلوی تشکیل ترکیبات آلومیناید تیتانیم را نیز می‌گیرد. با بیشتر شدن درصد آن هم به تشکیل این ترکیبات آلومیناید تیتانیم می‌کند و هم منجر به تشکیل فاز Ti5Si3 می‌شود (نسبت 28/0). این فاز با بیشتر شدن درصد سیلسیم از مورفولوژی گسسته به حالت پیوسته تغییر فرم پیدا می‌کند (نسبت 6/0). با افزایش بیشتر میزان سیلسیم (نسبت 1)، فاز TiSi2 تشکیل می‌شود که با ساختار رشته‌ای شکل در سراسر نمونه پراکنده می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The effect of silicon on the formation of titanium aluminide intermetallic compounds from Al and TiO2

نویسندگان [English]

  • Razieh Khoshhal 1
  • Seyed Vahid Alavi Nezhad Khalil Abad 2
1 Department of Materials and Metallurgical Engineering, Birjand University of Technology, Birjand, Iran.
2 Department of Civil Engineering, Birjand University of Technology
چکیده [English]

In this article, an attempt was made to investigate the effect of the addition of silicon on the titanium aluminide compound formation from TiO2 and Al raw materials. Silicon has a eutectic with aluminum and can reduce its melting temperature, which can have effective impact on the formation of titanium aluminide compounds. On the other hand, due to the production of Ti5Si3 compound, it can be effective in increasing the oxidation resistance of compounds and composites containing titanium aluminide. With this aim in mind, the present paper has strove to determine the impact of this element on the formation of titanium aluminides and the type of titanium silicide phases by adding different amounts of silicon to TiO2 and Al raw materials. The key findings emerged, showed that when silicon is added to the system in small amounts (0.1), it not only does not have a positive effect on the reactions, it also prevents the formation of titanium aluminide compounds, but with an increase in its percentage (0.28), it also causes the formation of these titanium aluminide compounds and leads to the formation of Ti5Si3 phase. This phase changes from a discrete morphology to a continuous state as the percentage of silicon increases (0.6). With a further increase in the amount of silicon (1), the TiSi2 phase is formed, which is dispersed throughout the sample with a string-like structure.

کلیدواژه‌ها [English]

  • Titanium aluminide
  • Silicon
  • Intermetallic compounds
  • Mechanism
[1] A. Knaislová, P. Novák, J. Linhart, I. Szurman, K. Skotnicová, J. Juřica, and T. Čegan, "Structure and Properties of Cast Ti-Al-Si Alloys," Materials (Basel), vol. 14, p. 813, 2021.
[2] J. Dai, J. Zhu, C. Chen, and F. Weng, "High temperature oxidation behavior and research status of modifications on improving high temperature oxidation resistance of titanium alloys and titanium aluminides: A review," Journal of Alloys and Compounds, vol. 685, pp. 784-798, 2016.
[3] R. Tewari, N. KSarkar, D. Harish, B. Vishwanadh, and G. K. Dey, Chapter 9-Intermetallics and Alloys for High Temperature Applications In Materials under Extreme Conditions. Amsterdam, The Netherlands: Elsevier, 2017.
[4] H. Clemens and S. Mayer, "Intermetallic titanium aluminides in aerospace applications – processing, microstructure and properties," Materials at High Temperatures, vol. 33, pp. 560-570, 2016.
[5] N. Cinca, C. R. C. Lima, and J. M. Guilemany, "An overview of intermetallics research and application: Status of thermal spray coatings," Journal of Materials Research and Technology, vol. 2, pp. 75-86, 2013.
 [6] Y. Shida and H. Anada, "The influence of ternary element addition on the oxidation behaviour of TiAl intermetallic compound in high temperature air," Corrosion Science, vol. 35,  pp. 945-953. 1993.
[7] A. Knaislová, P. Novák, M. Cabibbo, L. Jaworska, and D. Vojtěch, "Development of TiAl–Si Alloys—A Review," Materials, vol. 14, p. 1030, 2021.
[8] H.-P. Xiong, W. Mao, Y.-H. Xie, Y.-Y. Cheng, and X.-H. Li, "Formation of silicide coatings on the surface of a TiAl-based alloy and improvement in oxidation resistance," Materials Science and Engineering: A, vol. 391, pp. 10-18, 2005.
[9] T. C. Munro and B. Gleeson, "The deposition of aluminide and silicide coatings on γ-TiAl using the halide-activated pack cementation method," Metallurgical and Materials Transactions A, vol. 27, pp. 3761-3772, 1996.
[10] Y. Qiao, Z. Shen, and X. Guo, "Co-deposition of Si and B to form oxidation-resistant coatings on an Nb-Ti-Si based ultrahigh temperature alloy by pack cementation technique," Corrosion Science, vol. 93, 2015.
[11] W. Liang, X. X. Ma, X. G. Zhao, F. Zhang, J. Y. Shi, and J. Zhang, "Oxidation kinetics of the pack siliconized TiAl-based alloy and microstructure evolution of the coating," Intermetallics, vol. 15,  pp. 1-8,  2007.
[12] J. Sun, Q. Fu, and L. Guo, "Influence of siliconizing on the oxidation behavior of plasma sprayed MoSi2 coating for niobium based alloy," Intermetallics, vol. 72, pp. 9-16, 2016.
[13] S. Teng, W. Liang, Z. Li, and X. Ma, "Improvement of high-temperature oxidation resistance of TiAl-based alloy by sol–gel method," Journal of Alloys and Compounds, vol. 464,  pp. 452-456, 2008.
[14] D. Vojtěch, P. Novák, P. Macháč, M. Morťaniková, and K. Jurek, "Surface protection of titanium by Ti5Si3 silicide layer prepared by combination of vapour phase siliconizing and heat treatment," Journal of Alloys and Compounds, vol. 464, pp. 179-184, 2008.
[15] L. Zemˇcík, A. Dlouhý, S. Król, and M. Pra˙zmowskic, "Vacuum Metallurgy of TiAl Intermetallics," presented at the 14th International Conference on Metallurgy and Materials, Hradec nad Moravicí, Czech Republic, 24-26 May 2005., 2005.
[16] B. Bewlay, S. Nag, A. Suzuki, and M. Weimer, "TiAl alloys in commercial aircraft engines," Materials at High Temperatures, vol. 33, pp. 1-11, 2016.
[17] H.-P. Xiong, W. Mao, W.-L. Ma, Y.-H. Xie, Y.-F. Chen, H. Yuan, and X.-H. Li, "Liquid-phase aluminizing and siliconizing at the surface of a Ti60 alloy and improvement in oxidation resistance," Materials Science and Engineering: A, vol. 433, pp. 108-113, 2006
[18] S. Gray, M. H. Jacobs, C. B. Ponton, W. Voice, and H. E. Evans, "A method of heat-treatment of near γ-TiAl to enhance oxidation resistance by the formation of a Ti5Si3 layer," Materials Science and Engineering: A, vol. 384, pp. 77-82, 2004.
[19] P. Novák, J. Kříž, F. Průša, J. Kubásek, I. Marek, A. Michalcová, M. Voděrová, and D. Vojtěch, "Structure and properties of Ti–Al–Si-X alloys produced by SHS method," Intermetallics, vol. 39, pp. 11-19, 2013.
[20] Z. Q. Guan, T. Pfullmann, M. Oehring, and R. Bormann, "Phase formation during ball milling and subsequent thermal decomposition of Ti–Al–Si powder blends," Journal of Alloys and Compounds, vol. 252, pp. 245-251, 1997.
[21] P. Novak, D. Vojtěch, J. Šerák, J. Kubásek, F. Průša, V. Knotek, A. Michalcova, and M. Novák, "Synthesis of Intermediary Phases in Ti-Al-Si System by Reactive Sintering," Chemicke Listy, vol. 103, pp. 1022-1026, 2009.
[22] H. Aghajani, A. T. Tabrizi, S. A. Javadi, M. E. T. Tabrizi, A. Homayouni, and S. Behrangi, "Thermodynamically study of phase formation of Ni-Ti-Si nanocomposites produced by self-propagating high-temperature synthesis method," Synthesis and sintering, vol. 1, pp. 189-196, 2021.
[23] N. Sadeghi, H. Aghajani, and M. R. Akbarpour, "Microstructure and tribological properties of in-situ TiC-C/Cu nanocomposites synthesized using different carbon sources (graphite, carbon nanotube and graphene) in the Cu-Ti-C system," Ceramics International, vol. 44, pp. 22059-22067, 2018.
[24] Y. A. Sorkhe, H. Aghajani, and A. Taghizadeh Tabrizi, "Mechanical alloying and sintering of nanostructured TiO2 reinforced copper composite and its characterization," Materials & Design, vol. 58, pp. 168-174, 2014
[25] R. Khoshhal, M. Soltanieh, and M. Mirjalili, "Formation and Growth of Titanium Aluminide Layer at the Surface of Titanium Sheets Immersed in Molten Aluminum," Iranian Journal of Materials Science and Engineering, 2010.
[26] A. Školáková, P. Salvetr, J. Leitner, T. Lovaši, and P. Novák, "Formation of Phases in Reactively Sintered TiAl3 Alloy," Molecules, vol. 25, p. 1912, 2020
[27] A. Kamali, H. Razavizadeh, and M. Hadavi, "A process for production of titanium aluminide: Reaction mechanism," International Journal of Self-Propagating High-Temperature Synthesis, vol. 16, pp. 119-124, 2007.
[28] B. Liu and Y. Liu, "27 - Powder metallurgy titanium aluminide alloys," in Titanium Powder Metallurgy, M. Qian and F. H. Froes, Eds., ed Boston: Butterworth-Heinemann, pp. 515-531, 2015.
[29] V. V. Kurbatkina, "Titanium Aluminides," Concise Encyclopedia of Self-Propagating High-Temperature Synthesis, pp. 392-393, 2017.
[30] H. Hyer, L. Zhou, A. Mehta, S. Park, T. Huynh, S. Song, Y. Bai, K. Cho, B. McWilliams, and Y. Sohn, "Composition-Dependent Solidification Cracking of Aluminum-Silicon Alloys During Laser Powder Bed Fusion," Acta Materialia, vol. 208, p. 116698, 2021.
[31] H.-W. Liu and K. P. Plucknett, "Titanium aluminide (Ti-48Al) powder synthesis, size refinement and sintering," Advanced Powder Technology, vol. 28, pp. 314-323, 2017.
[32] R. Khoshhal, M. Soltanieh, and s. Boutorabi, "Investigation on the reactions sequence between synthesized ilmenite and aluminum," Journal of Alloys and Compounds, vol. 628, pp. 113-120, 2015.
[33] A. P. Woodfield, P. J. Postans, M. H. Loretto, and R. E. Smallman, "The effect of long-term high temperature exposure on the structure and properties of the titanium alloy Ti 5331S," Acta Metallurgica, vol. 36, pp. 507-515, 1988.
[34] D. Vojtěch, H. Čížová, K. Jurek, and J. Maixner, "Influence of silicon on high-temperature cyclic oxidation behaviour of titanium," Journal of Alloys and Compounds, vol. 394, pp. 240-249, 2005.
[35] D. Vojtěch, B. Bártová, and T. Kubatı́k, "High temperature oxidation of titanium–silicon alloys," Materials Science and Engineering: A, vol. 361, pp. 50-57, 2003
[36] L. J. Brillson, M. L. Slade, and H. W. Richter, "Titanium–silicon and silicon dioxide reactions controlled by low temperature rapid thermal annealing," Journal of Vacuum Science & Technology A, vol. 4, p. 993, 1986.
[37] I. J. M. M. Raaijmakers, "Fundamental aspects of reactions in titanium-silicon thin films for integrated circuits," Phd Thesis, Technische Universiteit Eindhoven, Research TU/e / Graduation TU/e, 1988.
[38] K. Maex, R. F. d. Keersmaecker, M. v. Rossum, W. F. v. d. Weg, and P. G. Krooshof, "Metals and Silicides," presented at the Workshop on Refr.  , Aussois (France), 1987.
 
CAPTCHA Image