تحولات ریزساختاری و ترکیبی سیستم نیکل- مس بر حسب سرعت آسیاکاری حین فرآیند پوشش‌دهی مکانیکی سطح (SMC)

نوع مقاله : علمی و پژوهشی

نویسندگان

1 دانشگاه آزاد اسلامی، واحد قوچان

2 دانشگاه علم و صنعت ایران

چکیده

در دهه اخیر، عملیات پوشش‌دهی سطوح با استفاده از فرآیند آلیاژسازی مکانیکی که در این مقاله "پوشش‌دهی مکانیکی سطح (Surface Mechanical Coating (SMC))" معرفی شده است، به عنوان روشی نوین و بنیادی مورد توجه برخی از محققین قرار گرفته است. در تحقیق پیش رو، بررسی تاثیر پارامتر سرعت آسیاکاری بر فرآیند پوشش دهی مکانیکی سطح (SMC) در بازه 200 تا 500 دور بر دقیقه برای دو مدت زمان 20 و 60 ساعت آسیاکاری مدنظر واقع شده است. از آنجایی که افزایش سرعت آسیاکاری منجر به افزایش انرژی وارده به پودر و همچنین افزایش دمای محفظه می‌گردد، لذا تغییرات ریزساختاری و ترکیبی در پودر و پوشش اجتناب ناپذیر است. بدین منظور جهت بررسی‌های ساختاری و ترکیبی از آنالیز پراش اشعه ایکس، میکروسکوپ الکترونی روبشی و میکرو آنالیزر پروب الکترونی استفاده گردید. لازم به ذکر است که، به منظور انجام عملیات پوشش‌دهی، از پودر مس به همراه گلوله نیکل استفاده گردید و بررسی‌ها از چهار منظر مختلف مورد توجه قرار گرفت؛ سطح خارجی پودر و گلوله و سطح مقطع برشی پودر و گلوله. نتایج نشان داد که تکمیل تشکیل محلول جامد Cu-Ni برای نمونه‌های با مدت زمان 20 ساعت آسیاکاری، در سرعت 400 دور بر دقیقه و برای نمونه های با مدت زمان 60 ساعت آسیاکاری، در سرعت 300 دور بر دقیقه حاصل گردیده است. همچنین مشخص گردید که در نمونه با 60 ساعت آسیاکاری در سرعت 400 دور بر دقیقه ضخیم‌ترین پوشش (حدود 220 میکرومتر) حاصل گردیده است. ضمنا مکانیزم تشکیل پوشش حین فرآیند SMC با توجه به بررسی‌های میکروسکوپی استخراج گردید.

کلیدواژه‌ها


عنوان مقاله [English]

Microstructural and Compositional Evolution of Ni-Cu Solid Solution versus Mechanical Alloying Speed during Surface Mechanical Coating (SMC)

نویسندگان [English]

  • Iman Farahbakhsh 1
  • Alireza Zakeri 2
1 Department of Engineering, Quchan Branch, Islamic Azad University, Quchan, Iran
2 IUST
چکیده [English]

Recently, surface coating process by mechanical alloying method was considered as a new and fundamental method. The method in this paper was introduced as "surface mechanical coating (SMC)". In this research, effect of speed milling parameters on mechanical surface coating process in the range of 200 to 500 rpm for both 20 and 60 hour milling time was considered. Since the milling speed leads to increased energy and higher chamber temperature, then microstructural and compositional changes in the powder and coating are inevitable. X-ray diffraction, electron probe micro analyzer and scanning electron microscope were used to study the structure and composition properties. It should be mentioned that in this research copper powder and nickel ball were used as initial materials. The results showed that the completed formation of Cu-Ni solid solution was acquired after 20 hours of milling at 400 rpm and 60 hours of milling at 300 rpm. It was found that the thickest coating layer of about 220 µm was obtained after 60 hours of milling at 400 rpm. The solid solution formation mechanism during SMC process was extracted according to microscopic examination.

کلیدواژه‌ها [English]

  • Surface Mechanical Coating (SMC)
  • Speed of Mechanical Alloying
  • Cu-Ni Solid Solution
  • Ni Ball
  • Mechanical Diffusion
1. Suryanarayana C.K., "Nanocrystalline materials-Current research and future directions", Hyperfine Interactions, Vol. 130, pp. 5-44, (2000).
2. Meyers M.A., Mishra A., Benson D.J., "Mechanical properties of nanocrystalline materials", Progress in Materials Science, Vol. 51, pp. 427-556, (2006).
3. Gleiter H., "Nanocrystalline materials", Progress in Materials Science, Vol. 33, pp. 223-315, (1989).
4. Fecht H., "Synthesis and properties of nanocrystalline metals and alloys prepared by mechanical attrition", Nanostructured Materials, Vol. 1, pp. 125-130, (1992).
5. Takacs L., Balaž P., Torosyan A., "Ball milling-induced reduction of MoS2 with Al", Journal of materials science, Vol. 41, pp. 7033-7039, (2006).
6. Suryanarayana C., "Mechanical alloying and milling", Progress in Materials Science, Vol. 46, pp. 1-184, (2001).
7. Bateni M., Mirdamadi S., Ashrafizadeh F., Szpunar J., Drew R., "Oxidation behaviour of titanium coated copper substrate", Surface and Coatings Technology, Vol. 139, pp. 192-199, (2001).
8. Shams El Din A., El Dahshan M., Taj El Din A., "Dissolution of copper and copper-nickel alloys in aerated dilute HCl solutions", Desalination, Vol. 130, pp. 89-97, (2000).
9. Jena P., Brocchi E., Motta M., "Preparation of Cu-Ni alloys through a new chemical route", Metallurgical and Materials Transactions B, Vol. 35, pp. 1107-1112, (2004).
10. Glibin V., Kuznetsov B., Vorobyova T., "Investigation of the thermodynamic properties of Cu–Ni alloys obtained by electrodeposition or by casting", Journal of alloys and compounds, Vol. 386, pp. 139-143, (2005).
11. Chatterjee J., Bettge M., Haik Y., Jen Chen C., "Synthesis and characterization of polymer encapsulated Cu–Ni magnetic nanoparticles for hyperthermia applications", Journal of magnetism and magnetic materials, Vol. 293, pp. 303-309, (2005).
12. Niu H., Chen Q., Lin Y., Jia Y., Zhu H., Ning M., "Hydrothermal formation of magnetic Ni–Cu alloy nanocrystallites at low temperatures", Nanotechnology, Vol. 15, pp. 1054, (2004).
13. Bettge M., Chatterjee J., Haik Y., "Physically synthesized Ni-Cu nanoparticles for magnetic hyperthermia", Biomagnetic research and technology, Vol. 2, pp. 4, (2004).
14. Durivault L., Brylev O., Reyter D., Sarrazin M., Belanger D., Roue L., "Cu–Ni materials prepared by mechanical milling: their properties and electrocatalytic activity towards nitrate reduction in alkaline medium", Journal of alloys and compounds, Vol. 432, pp. 323-332, (2007).
15. Guerrero-Paz J., Jaramillo-Vigueras D., "Comparison of grain size distributions obtained by XRD and TEM in milled FCC powders", Nanostructured materials, Vol. 11, pp. 1195-1204, (1999).
16. Guerrero-Paz J., Jaramillo-Vigueras D., "Nanometric grain formation in ductile powders by low-energy ball milling", Nanostructured materials, Vol. 11, pp. 1123-1132, (1999).
17. Hellstern E., Fecht H., Garland C., Johnson W., McCandish L., Polk D., et al., "Multicomponent ultrafine microstructures", Proceedings of Materials Research Society, pp. 137-142, (1989).
18. Karimbeigi A., Zakeri A., Sadighzadeh A., "Effect Of Composition And Milling Time On The Synthesis Of Nanostructured Ni-Cu Alloys By Mechanical Alloying Method", Iranian Journal of Materials Science & Engineering, Vol. 10, (2013).
19. Subramanian P.R., Phase diagrams of binary copper alloys, Vol. 10: Asm Intl, (1994).
20. Weertman J.R., "Mechanical behavior of nanocrystalline metals", William Andrew Publishing, 13 Eaton Avenue, Norwich, NY 13815, USA, pp. 397-421, (2002).
21. Kuschke W.M., Keller R.M., Grahle P., Mason R., Arzt E., "Mechanisms of powder milling investigated by X-ray diffraction and quantitative metallography", Zeitschrift für Metallkunde, Vol. 86, pp. 804-813, (1995).
22. Kaffash H., Shokuhfar A., Rezaie H.R., Mostaed E., Mostaed A., "Effects of Milling Time and Impact Force on the Mutual Diffusion of Cu and Fe during Synthesis of Nanostructured Fe-50% Cu Alloy via Mechanical Alloying Process", Defect and Diffusion Forum, pp. 1262-1266, (2010).
23. Lü L., Lai M., Zhang S., "Fabrication of NiAl intermetallic compound using mechanical alloying technique", Journal of materials processing technology, vol. 48, pp. 683-690, (1995).
24. Suryanarayana C., Norton M.G., "X-ray diffraction: a practical approach", Microscopy and Microanalysis, Vol. 4, pp. 513-515, (1998).
25. Pabi S., Joardar J., Manna I., Murty B., "Nanocrystalline phases in CuNi, CuZn and NiAl systems by mechanical alloying", Nanostructured Materials, vol. 9, pp. 149-152, (1997).
26. Barret C.S., “Structure of Metals: Crystallographic Methods, Principles, and Data”, McGraw-Hill book Company, (1952).
27. Lemine O., Alyamani A., Sajieddine M., Bououdina M., "Characterization of α-Fe 2 O 3 nanoparticles produced by high energy ball milling", Proceedings of the 1st WSEAS international conference on Nanotechnology, pp. 66-69, (2009).
28. Suryanarayana C., Norton M.G., “X-ray diffraction: a practical approach”, Springer, (1998).
29. Tilley R.J., “Crystals and crystal structures:, John Wiley & Sons, (2006).
30. Suryanarayana C., "Mechanical alloying and milling", Progress in Materials Science, Vol. 46, pp. 1-184, (2001).
31. Abdellaoui M., Gaffet E., "A mathematical and experimental dynamical phase diagram for ball-milled NiZr", Journal of Alloys and Compounds, Vol. 209, pp. 351-361, (1994).
32. Abdellaoui M., Gaffet E., "The physics of mechanical alloying in a planetary ball mill: mathematical treatment", Acta Metallurgica et Materialia, Vol. 43, pp. 1087-1098, (1995).
33. Maurice D., Courtney T.H., "Modeling of mechanical alloying: Part III. Applications of computational programs", Metallurgical and Materials Transactions A, Vol. 26, pp. 2437-2444, (1995).
34. Maurice D., Courtney T.H., "Modeling of mechanical alloying: Part II. development of computational modeling programs", Metallurgical and Materials Transactions A, Vol. 26, pp. 2431-2435, (1995).
35. Maurice D.R., Courtney T.H., "The physics of mechanical alloying: a first report", Metallurgical Transactions A, Vol. 21, pp. 289-303, (1990).
36. Cangiano M.A, Ojeda M.W., Carreras A.C., Gonzalez J.A., Ruiz M.C., "A study of the composition and microstructure of nanodispersed Cu–Ni alloys obtained by different routes from copper and nickel oxides", Materials Characterization, Vol. 61, pp. 1135-1146, (2010).
37. Fecht H., Hellstern E., Fu Z., Johnson W., "Nanocrystalline metals prepared by high-energy ball milling", Metallurgical and Materials Transactions A, Vol. 21, pp. 2333-2337, (1990).
38. Kotresh M., Benal M., "Review: Copper Based Shape Memory Alloy For Reinforcing Into Adaptive Composites", (2014).
39. Xiao Z., Li Z., Fang M., Xiong S., Sheng X., Zhou M., "Effect of processing of mechanical alloying and powder metallurgy on microstructure and properties of Cu–Al–Ni–Mn alloy", Materials Science and Engineering: A, Vol. 488, pp. 266-272, (2008).
40. Guerrero-Paz J., Jaramillo-Vigueras D., "Particle size evolution in Cu-15at% Al mechanically alloyed", Nanostructured Materials, Vol. 10, pp. 1209-1222, (1998).
41. Farahbakhsh I., Zakeri A., Manikandan P., Tanaka S., Hokamoto K., "Effect of Mechanical Alloying Parameters on the Formation of Ni--Cu Solid Solution Coating on the Ni Balls", Japanese Journal of Applied Physics, Vol. 50, pp. 01BE06-01BE06-7, (2011).
42. Eckert J., Holzer J.C., Krill C.E., Johnson W.L., "Structural and thermodynamic properties of nanocrystalline fcc metals prepared by mechanical attrition", Journal of Materials Research, Vol. 7, pp. 1751-1761, (1992).
43. El-Eskandarany M.S., “Mechanical Alloying For Fabrication Of Advanced Engineering Materials”, Noyes Publications, (2001).
CAPTCHA Image