نوع مقاله : علمی و پژوهشی
نویسندگان
1 گروه مهندسی مواد، دانشکدۀ فنی و مهندسی گلپایگان، دانشگاه صنعتی اصفهان،گلپایگان، ایران.
2 گروه مهندسی مواد، دانشکده فنی و مهندسی گلپایگان، دانشگاه صنعتی اصفهان، گلپایگان، ایران
چکیده
کلیدواژهها
موضوعات
عنوان مقاله [English]
نویسندگان [English]
Skin, as the largest and one of the most vital organs of the human body, which is subject to damage more than other tissues, consists of three main layers: epidermis, dermis, and hypodermis. Tissue engineering and biomaterials as cell support can be used to regenerate the damaged parts of skin. In the present study, a three-layer scaffold was made for biomimicking the native skin tissue and accelerating wound healing. Poly(ε-caprolactone)/zinc oxide nanoparticles as porous polymer nanocomposite containing 0, 5, 10 and 15 wt.% zinc oxide nanoparticles prepared in two layers using solvent casting/salt leaching method. The third layer of chitosan as the external membrane was added by sodium hydroxide cross-linking agent on the previous two layers. The phase structure, chemical functional group, and morphology of the prepared scaffolds were investigated using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM), respectively. To evaluate the mechanical properties, the prepared scaffolds were subjected to compressive strength test. The obtained results showed that the porosity of the three-layered scaffolds was partially changed in a gradient behavior. The structural integrity, morphological cohesion, and compressive strength of the scaffolds with 5 wt.% zinc oxide nanoparticles in which the cross-linking agent was used to add the chitosan membrane were significantly higher than the other prepared scaffolds.
کلیدواژهها [English]
ارسال نظر در مورد این مقاله