Optimization of Effective Parameters on ZrB₂ Ceramic Oxidation

Mahdi Azizieh²

Zohre Balak¹

Hosin Kafashan³

1. Introduction

 ZrB_2 is used in different industries due to individual of mechanical and physical properties such as high melting point, high thermal conductivity, flexural strength and hardness. When ZrB₂ is exposed to air at high temperatures, it reacts with O₂ to form ZrO₂ and B₂O₃:

$$ZrB_2 + 5/2O_2 \rightarrow ZrO_2 + B_2O_3(l)$$
 (1)

Due to high vapor pressure, the B2O3 evaporates above $1100 \circ C$:

$$B_2O_3(l) \to B_2O_3(g) \tag{2}$$

The removal of B2O3 by vaporization leaves behind a porous ZrO2 scale, which results in the rapid linear oxidation kinetics above 1400 °C. Thus, the high-temperature applications of monolithic ZrB2 will be limited by its poor oxidation resistance.

The addition of SiC has been reported to improve the oxidation resistance of ZrB2. Above 1100 °C, SiC reacts with O2 according to the following reaction:

$$SiC + 32O_2 \rightarrow SiO_2(l) + CO(g)$$
(3)

The SiO₂ and B₂O₃ form a borosilicate liquid, which covers the exposed surfaces. As temperature increases, B₂O₃ is continuously removed from the borosilicate liquid, leading to the formation of a SiO₂-rich glassy layer. Because SiO₂ is significantly less volatile and more viscous than B₂O₃, the SiO₂- rich layer provides effective oxidation protection for ZrB₂–SiC above 1100 °C.

2. Experimental

With respect to high number of effective parameters (Table 1), Taguchi design was used. Table 2 shows the conditions of samples preparation and Table 3 shows the specification of powders. The powders corresponding to 32 different compositions, according to Table 2, were mixed by wet ball-milling at 200 rpm for 3 hours in a zirconia's bottle, using zirconia's balls and ethanol as media.

The mixtures were then dried. The powder mixture was put into graphite die lines with graphite foil which has an inner diameter of 50 mm and sintered using SPS apparatus (SPS-20T-10, China). The sintering was performed at different temperatures (between 1600 °C and 1900 °C), different pressures (between 10 MPa and 40 MPa) and different holding times (between 4 minutes and 16 minutes) based on Taguchi design (Table 1) in vacuum. Oxidation test was conducted in box furnace at 1600 °C for one hour.

Table 1. Effective parameters on oxidation and their levels

TEST	FAC.1	FAC.2	FAC.3	FAC.4	FAC.5	FAC.6	FAC.8	FAC.7	FAC.9
	SiC	C _f	M.t	MoSi ₂	HfB_2	ZrC	Р	Т	t
	Vol%	Vol%	hr	Vol%	Vol%	Vol%	MPa	С	min
L1	5	0	0	0	0	0	10	1600	4
L2	10	2.5	2.5	2	5	5	20	1700	8
L3	15	5	5	4	10	10	30	1800	12
L4	20	7.5	7.5	6	15	15	40	1900	16

Table 2. Conditions of samples preparation

TEST	FAC.1	FAC.2	FAC.3	FAC.4	FAC.5	FAC.6	FAC.7	FAC.8	FAC.9
	SiC	C _f	M. t	MoSi ₂	HfB_2	ZrC	Temp.	Press.	Time
	Vol%	Vol%	h	Vol%	Vol%	Vol%	С	MPa	min
1	5	0	0	0	0	0	1600	10	4
2	5	2.5	2.5	2	5	5	1700	20	8
3	5	5	5	4	10	10	1800	30	12
4	5	7.5	7.5	6	15	15	1900	40	16
5	10	0	0	2	5	10	1800	40	16
6	10	2.5	2.5	0	0	15	1900	30	12
7	10	5	5	6	15	0	1600	20	8
8	10	7.5	7.5	4	10	5	1700	10	4
9	15	0	2.5	4	15	0	1700	30	16
10	15	2.5	0	6	10	5	1600	40	12
11	15	5	7.5	0	5	10	1900	10	8
12	15	7.5	5	2	0	15	1800	20	4
13	20	0	2.5	6	10	10	1900	20	4
14	20	2.5	0	4	15	15	1800	10	8
15	20	5	7.5	2	0	0	1700	40	12
16	20	7.5	5	0	5	5	1600	30	16
17	5	0	7.5	0	15	5	1800	20	12
18	5	2.5	5	2	10	0	1900	10	16
19	5	5	2.5	4	5	15	1600	40	4
20	5	7.5	0	6	0	10	1700	30	8
21	10	0	7.5	2	10	15	1600	30	8
22	10	2.5	5	0	15	10	1700	40	4
23	10	5	2.5	6	0	5	1800	10	16
24	10	7.5	0	4	5	0	1900	20	12
25	15	0	5	4	0	5	1900	40	8
26	15	2.5	7.5	6	5	0	1800	30	4
27	15	5	0	0	10	15	1700	20	16
28	15	7.5	2.5	2	15	10	1600	10	12
29	20	0	5	6	5	15	1700	10	12
30	20	2.5	7.5	4	0	10	1600	20	16
31	20	5	0	2	15	5	1900	30	4
32	20	7.5	2.5	0	10	0	1800	40	8

Table 3. Specification of powders

Powder	Grain sizemµ
ZrB_2	20
SiC	25
C_{f}	T800, 5
MoSi ₂	25
HfB_2	30
ZrC	20

¹ Corresponding Author: Assistant Professor, Department of materials science and engineering, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran.

Email: zbalak1983@gmail.com

² Assistant Professor, Department of materials science and engineering, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran.

³ Assistant Professor, Department of materials science and engineering, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran.

3. Results and Discussion

Figure 1 shows samples before and after oxidation at 1600 °C for 1 hour. The oxidation of samples was determined visually and the data are given in Table 4. Then the data are entered to the software and the effect of each parameter on oxidation are obtained.

Fig. 1. Samples before and after oxidation at 1600 °C for 1 hour

Table 4. Oxidation of samples

Comp.	Oxidation	Comp.	Oxidation
1	3	17	1
2	2.25	18	3.25
3	1.25	19	4.75
4	3	20	1.25
5	1.5	21	4
6	3.5	22	0.5
7	0.25	23	0.25
8	0.25	24	0
9	0.5	25	0
10	0.75	26	0
11	3	27	5
12	2.25	28	0.25
13	0.5	29	1.75
14	1.75	30	4
15	0.5	31	0.1
16	0	32	0

4. Conclusion

- HfB₂ has positive effect on oxidation resistance of ZrB₂ ceramics.
- By increasing ZrC and C_f, oxidation increases.
- Among the SPS parameters, temperature has highest effect.
- SiC and MoSi₂ improve the oxidation resistance.
- Optimum levels for manufacturing composite with the most oxidation resistance are as below:

SiC: 20vol%, C_f: 0vol%, M.t: 5 hr, MoSi₂: 6vol%, HfB₂: 15 vol%, ZrC: 10vol%, Temparure: 1800C, Pressure: 30MPa, time: 8min

Fig. 2. The effect of SiC, Cf and M.t on oxidation

Fig. 3. The effect of MoSi₂, HfB₂ and ZrC on oxidation

Fig. 4. The effect of temperature, time and pressure on oxidation