بررسی رفتار حرارتی و مقاومت به خوردگی آلیاژ آمورف توده‌ای پایه تیتانیم با ترکیب (Ti41Zr25Be28Fe6)93Cu7

نوع مقاله : علمی و پژوهشی

نویسندگان

دانشکده مواد و شیمی، مجتمع آموزش عالی فنی و مهندسی اسفراین، اسفراین، خراسان شمالی، ایران.

چکیده

پس از تولید آلیاژ آمورف توده‌ای با ترکیب (Ti41Zr25Be28Fe6)93Cu7، ساختار، رفتار حرارتی و رفتار خوردگی آن در دو محلول مختلف، با استفاده از پراش پرتو X، میکروسختیسنج ویکرز، گرماسنج روبشی تفاضلی و پتانشیو استات مطالعه شد. آلیاژ فوق با پنج مرحله بلورینگی، رفتار حرارتی پیچیدهای نشان داد. محصول هر مرحله بلورینگی و سختی نمونه، پس از گرمایش پیوسته تا دمای پایان بلورینگی مشخص شد. این آلیاژ با دانسیتۀ جریان خوردگی معادل 4/0 میکروآمپر بر سانتیمتر مربع در محلول NaCl با غلظت 5/3 درصد گزینۀ مناسبی برای کاربردهای مهندسی و پزشکی است. با گرمایش آلیاژ در محدودۀ مذاب تحت تبرید، تغییرات نرخ خوردگی ناچیز بود و پس از آن با وقوع بلورینگی، کاهش در مقاومت به خوردگی مشاهده شد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of Thermal and Corrosion Behavior of a Ti-Based Bulk Metallic Glass with Composition of (Ti41Zr25Be28Fe6)93Cu7

نویسندگان [English]

  • Zahra Jamili shirvan
  • Gholamreza Heidari
Faculty of Material and chemist, Esfarayen University of Technology, Esfarayen, North Khorasan, Islamic Republic of Iran.
چکیده [English]

Structure, thermal and corrosion behavior of (Ti41Zr25Be28Fe6)93Cu7 bulk metallic glass in two different solutions were studied using X-ray diffraction pattern, Vickers micro hardness test, Differential Scaning Calorimetry and tafel polarization methods. The amorphous samples were heated up to the final temperature of crystallization.  It was revealed that the studied alloy has complex crystallization behavior including 5 steps of crystallization. Crystallized phases of each crystallization step and its hardness were identified. The studied alloy with corrosion current density of 0.4 μA/cm2 in 3.5wt % NaCl solution is a suitable candidate for engineering and biomedical applications. Heating the samples in super cooled region showed insignificant changes in corrosion rate. An obvious decrease in corrosion resistance was observed in samples heated in crystallization region.

کلیدواژه‌ها [English]

  • Ti-based bulk metallic glass
  • Thermal behavior
  • Crystallization
  • Corrosion behavior
  1. Xia, M. X., Ma, C. L., Zheng, H. X., and Li, J. G., "Preparation and Crystallization of Ti53Cu27Ni12Zr3Al7Si3B1 Bulk Metallic Glass with Wide Supercooled Liquid Region", Material Science and Engineering A, 390, pp. 372-375, (2005).
  2. Gong, P., Yao, K. F., Wang, X., Shao, Y., "Centimeter-Sized Ti-Based Bulk Metallic Glass with High Specific Strength", Journal of Progress in Natural Science: Materials International, Vol 22, NO. 5, pp. 401-406, (2012).
  3. Pilarczyk, W., "Structure and properties of Zr-based bulk metallic glasses in as-cast state and after laser welding", Materials, DOI: https://doi.org/10.3390/ma11071117.
  4. Wang, D., Li, N., Liu, L., "Magnetic pulse welding of a Zr-based bulk metallic glass with aluminum plate", Intermetallics, 93, pp.180–185, (2018).
  5. Gong, P., Wang, X., Shao, Y., Chen, N., Liu, X., Yao, K.F., "A TiZrBeFeCu bulk metallic glass with superior glass-forming ability and high specific strength", Intermetallics, 43, pp. 177-181, (2013).
  6. Gong, P., Yao, K.F., Shao, Y., "Lightweight Ti–Zr–Be–Al bulk metallic glasses with improved glass-forming ability and compressive plasticity", Journal of non-crystalline solids, 358, pp. 620–2625, (2012).
  7. Gong, P., Wang, X., Shao, Y. "Ti-Zr-Be-Fe quaternary bulk metallic glasses designed by Fe alloying", Science China; Physics, Mechanics & Astronomy, 56, pp. 2090-2097, (2013).
  8. Zhao, S. F., Gong, P. Li, J. F., Chen, N., Yao, K. F., "Quaternary Ti–Zr–Be–Ni bulk metallic glasses with large glass-forming ability", Materials and Design, 85, pp. 564–573, (2015).
  9. Gu, J., Yang, X., Zhang, A., Shao, Y., Zhao, S.F, Yao, K. F., "Centimeter-sized Ti-rich bulk metallic glasses with superior specific strength and corrosion resistance", Journal of non-crystalline solids, 512, pp. 206–210, (2019).
  10. Wang, G., Huang, Y. J., Makhanlall, D., Shen, J., "Resistance spot welding of Ti40Zr25Ni3Cu12Be20 bulk metallic glass: experiments and finite element modeling", Rare Metals, DOI 10.1007/s12598-014-0354-8, (2014).
  11. Tao, P. G., Zhang, W. W., Tu, Q., Yang, Y. Z., "The evolution of microstructures and the properties of bulk metallic glass with consubstantial composition laser welding", Metals, 6, pp 233-242, (2016).
  12. Wang, G., Huang, Y.J., Makhanlall, D., Shen , J., "Friction joining of Ti40Zr25Ni3Cu12Be20 bulk metallic glass", Journal of Materials Processing and Technology, 212, pp. 1850–1855, (2012).
  13. Jamili- Shirvan, Z., Haddad- Sabzevar, M., Vahdati- Khaki, J., Chen, N., Shi, Q. Y., Yao, K. F., "Microstructure characterization and mechanical properties of Ti-based bulk metallic glass joints prepared with friction stir spot welding process", Material Design, 100, pp. 120–131, (2016).
  14. Wang, W. H., Dong, C., Shek, C., "Bulk Metallic Glasses", Journal of Material Science and Engineering R: Reports, 44, pp. 45-89, (2004).
  15. Sorayana, S. Inoue, A., "Bulk metallic glasses", Taylor and Francis group, International Standard book Number-13:978-1-4200-8597-6 (EBook-PDF), (2011).
  16. Miller, M., Liaw, P., "Bulk metallic glasses: an overview", Springer publication, USA, pp. 10, (2008).
  17. Scully, J. R., Gebert, A., Payer, J. H., "Corrosion and related mechanical properties of bulk metallic glasses", Journal of Materials research, 17, NO. 6, pp. 302-313, (2007).
  18. Pang, S. J., Liu, Y., Zhang, T., "New Ti-based Ti–Cu–Zr–Fe–Sn–Si–Ag bulk metallic glass for biomedical applications", Journal of Alloys and Compounds, 625, pp. 323-327, (2015).
  19. Wang, R. R., Wang, Y. Y., Yang, J., "Influence of heat treatment on the mechanical properties, corrosion behavior, and biocompatibility of Zr56Al16Co28 bulk metallic glass", Journal of Non- Crystalline Solids, 411, pp. 45-52, (2015).
  20. Guo, S. F., Liu, Z., Chan, K. C., "A plastic Ni-free Zr-based bulk metallic glass with high specific strength and good corrosion properties in simulated body fluid". Materrials Letters, 84, pp. 81-84, (2012).
  21. Fornell, J., Steenberge, N.V., Varea, A., "Enhanced mechanical properties and in vitro corrosion behavior of amorphous and devitrified Ti40Zr10Cu38Pd12metallic glass", Journal of Mechanical Behavior of Biological Material, 4, NO. 4, pp. 1709–1717, (2011).
  22. Huang, C. H., Lai, J. J., Wei, T. Y., "Improvement of bio-corrosion resistance for Ti42Zr40Si15Ta3 metallic glasses in simulated body fluid by annealing within supercooled liquid region", Material Science and Engineering C, 52, pp. 144-150, (2015).
  23. Wang, J. F., Huang, S., Wei, Y. Y., "Enhanced mechanical properties and corrosion resistance of a Mg–Zn–Ca bulk metallic glass composite by Fe particle addition", Materials Letters, 91, pp. 311–314, (2013).
  24. Zhang, X. L., Chen, G., Bauer, T., "Mg-based bulk metallic glass composite with high biocorrosion resistance and excellent mechanical properties", Intermetallics, 29, pp. 56-60, (2012).
  25. Gu, Y., Zheng, Z., Niu, S. Z., "The seawater corrosion resistance and mechanical properties of Cu47.5Zr47.5Al5 bulk metallic glass and its composites", Journal of Non-Crystalline Solids, 380, pp. 135-140, (2013).
  26. Kai, W., Kao, P. C., Chen, W. S., "The oxidation behavior of a Ti50Cu28Ni15Sn7 bulk metallic glass at 400–500 °C", Journal of Alloys and Compounds, 504s, pp. s180–s185, (2010).
  27. Pourgashti, M. H., Marzbanrad, E., Ahmadi, E., "Corrosion behavior of Zr41.2Ti13.8Ni10Cu12.5Be22.5 bulk metallic glass in various aqueous solutions", Materials Design, 31, pp. 2676–2679, (2010).
  28. Gebert, A., Buchholz, K., Eckert, J., "Hot water corrosion behaviour of Zr–Cu–Al–Ni bulk metallic glass", Materials Science and Engineering A, 316, pp. 60-65, (2001).
  29. Ningshen, S., Kamachi Mudali, U., Krishnan, R., "Corrosion behavior of Zr-based metallic glass coating on type 304L stainless steel by pulsed laser deposition method", Surface Coating Technology, 205, pp. 3961-3966, (2011).
  30. Cai, A. H., Xiong, X., Liu, Y., "Corrosion behavior of Cu55Zr35Ti10 metallic glass in the chloride media", Materials Chemistry and Physics, 134, pp. 938-944, (2012).
  31. Wang, T., Wu, Y. D., Hui, X. D., "Novel Ti-based bulk metallic glasses with superior plastic yielding strength and corrosion resistance", Materials Science and Engineering A, 642, pp. 297-303, (2015).
  32. Guo, S. F., Chan, K. C., Jiang, X. Q., "Atmospheric RE-free Mg-based bulk metallic glass with high bio-corrosion resistance", Journal of Non-Crystalline Solids, 379, pp. 107-111, (2013).
  33. Chan, K.Y., Man, P.J., Kyu, L.J., Tae, K.W., Hyang, K.D., "Precipitation of stable icosahedral phase in Ti-based amorphous alloys", Materials Transactions, 44, NO. 10, pp. 1978-1981, (2003).
  34. Zhang, Z., Xie, J.X., "Influence of relaxation and crystallization on micro-hardness and deformation of bulk metallic glass", Materials Science and Engineering A, 407, pp. 161-166, (2005).
  35. Dmowski, W., Fan, C., Morrison, M.L., Liawa, P.K., Egami, T., "Structural changes in bulk metallic glass after annealing below the glass-transition temperature", Materials Science and Engineering A, 471, pp. 125-129, (2007).
  36. Biraja, P. K., Stephen, G., Palakkal, A. K., Katharine, M. F., "Characterization of free volume changes associated with shear band formation in Zr- and Cu-based bulk metallic glasses", Intermetallics, 12, pp. 1073-1080, (2004).
  37. Bhowmick, R., Raghavan, R., Chattopadhyay, K., Ramamurty, U., "Plastic flow softening in a bulk metallic glass", Acta Materialia, 54, NO. 16, pp. 4221-4228, (2006).

38.   Yang, Y. J., Fan, X. D., Wang, F.L., Qi, H. N., Yue, Y., Ma, M. Z., Zhang, X. Y., Li, G., Liu, R. P., "Effect of Nb content on corrosion behavior of Ti-based bulk metallic glass composites", Applied Surface Science, Vol. 471, pp. 108-117, ( 2019).

  1. Hemmati, M., Pourgashti, M.H., Marzbanrad, E., Ahmadi, E., "Corrosion behavior of Zr41.2Ti13.8Ni10Cu12.5Be22.5 bulk metallic glass in various aqueous solutions", Materials and Design, 31, pp. 2676–2679, (2010).
  2. Pang, S. J., Men, H., Shek, C. H., Ma, C., Inoue, A., Zhang, T., "Formation, thermal stability and corrosion behavior of glassy Ti45Zr5Cu45Ni5 alloy", Intermetallics, 15, pp. 683-686, (2007).
  3. Yang, Y. J., Jin, Z. S., Ma, X. Z., Zhang, Z. P., Zhong, H., Ma, M. Z., Zhang, X. Y., Li, G., Liu, R. P., "Comparison of corrosion behaviors between Ti-based bulk metallic glasses and its composites", Journal of Alloys and Compounds, 750, pp. 757-764, (2018).
  4. Jamili-Shirvan, Z., Haddad-Sabzevar, M., Vahdati-Khaki, J., Yao, K. F., "Thermal behavior and non-isothermal crystallization kinetics of (Ti41Zr25Be28Fe6)93Cu7 bulk metallic glass", Journal of Non-Crystalline Solids, 447, pp. 156-166, (2016).
  5. S.J., Liu, Y., Zhang, T., "New Ti-based Ti–Cu–Zr–Fe–Sn–Si–Ag bulk metallic glass for biomedical applications", Journal of Alloys and Compounds, Vol. 625, pp. 323-327, (2015).