مطالعه تاثیر نوع و مقدار کاتالیست بر روند تبلور، خلوص و مورفولوژی ذرات مولایت تهیه شده به روش سل – ژل

نوع مقاله : علمی و پژوهشی

نویسندگان

1 گروه مهندسی متالورژی و مواد، دانشکده مهندسی، دانشگاه فردوسی مشهد

2 دانشگاه فردوسی مشهد، دانشکده مهندسی، گروه مهندسی متالورژی و مواد

چکیده

در پژوهش حاضر، تاثیر مقدار و نوع کاتالیست بر روند تبلور فازی سیستم Al2O3-SiO2 مورد بررسی قرار گرفت. به منظور فرآوری ذرات از روش سل ژل استفاده شد. ترکیب انتخاب شده جهت بررسی روند تبلور ترکیب شیمیایی مولایت استوکیومتری و یا 3Al2O3-2SiO2 بود. سل ابتدایی با استفاده از آلومینیوم نیترات نوناهیدرات (ANN)، تترااتیل اورتوسیلیکات(TEOS)، آب و اتانول تهیه گردید. ژل حاصل از این سل، ابتدا خشک شده و سپس با برنامه عملیات حرارتی خاص در بازه دمایی 900 الی 1550 درجه سانتی گراد مورد گرمایش قرار گرفت. به منظور تعیین نوع واکنش­هایی که با افزایش دما در نمونه­ها اتفاق می­افتد، آنالیز حرارتی افتراقی (DSC/TG) انجام­شد. آنالیز پراش پرتو ایکس (XRD) نیز با هدف تعیین تبلور فازی و یا ساختار آمورف ذرات انجام گرفت. مورفولوژی فازهای متبلور شده نیز توسط میکروسکوپ الکترونی روبشی (SEM) بررسی گردید. نتایج آنالیز XRD نشان داد که  مولایت تک فاز تنها در حضور مقادیر بهینه ای از کاتالیزور اسیدی یا بازی متبلور شده است. تصویربرداری توسط میکروسکوپ SEM نیز نشان داد نمونه­های فرآوری شده در pH اسیدی مورفولوژی صفحه ای دارند در حالی­که فرآوری در محیط بازی، منجر به تشکیل ذراتی با مورفولوژی کروی گردید. علاوه براین، نتایج به دست آمده نشان داد که نوع و مقدار کاتالیست، تاثیر قابل توجهی بر شروع روند تبلور فاز مولایت دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Characterization of the Effect of Type and Amount of Acid and Base Catalyst on the Crystallization and Morphology of Mullite Particles Synthesized by the Sol - Gel Method

نویسندگان [English]

  • Seyed Morteza Hosseini 1
  • Faezeh Darvishian Haghighi 1
  • Sahar Mollazadeh 1
  • Ali Reza kiani Rashid 2
1 Department of Material science and metallurgy engineering, faculty of engineering, Ferdowsi University of Mashhad, Mashhad, Iran
2 Department of material science and metallurgy engineering, faculty of engineering, Ferdowsi University of Mashhad,
چکیده [English]

The current study aims to investigate the effect of the type and amount of acid and base catalyst on the microstructural properties of mullite phase particles prepared by the sol-gel method (3Al2O3-2SiO2). Nona-hydrated aluminum nitrate (ANN), Tetraethyl orthosilicate (TEOS), ethanol, and water were used as starting materials. After the precise preparation method, obtained gels were dried in an inert atmosphere and heated with specific heat treatment (cycles or temperatures). DSC analysis was used to identify the proper (crystallization temperature of the particles). X-ray diffraction pattern (XRD) and scanning electron microscopy (SEM) analyses were utilized to investigate the phase crystallization and morphology of the created phases, respectively. XRD analysis showed that mullite is crystallized in all samples with acidic or basic catalyst. However, based on the results, single-phase mullite crystallized only in the presence of the optimal amount of acidic or basic catalyst. According to the SEM results, the samples synthesized at acidic pH had plate-like morphology, while basic samples had spherical morphology. Furthermore, increasing the concentrations of the catalysts did not affect the morphology of the particles. However, the type and the concentration of the catalyst had an impressive effect on the crystallization of the mullite phase.

کلیدواژه‌ها [English]

  • Sol-gel
  • Mullite
  • Catalyst
  1. T.-y. Chen, P. Somasundaran, "Preparation of novel core-shell nanocomposite particles by controlled polymer bridging", J. Am. Ceram. Soc, Vol. 81, pp.140-144, (1998).
  2. X.Y. Kong, Z.L. Wang, J. Wu, "Rectangular Single‐Crystal Mullite Microtubes, Advanced Materials", Vol.15, pp. 1445-1449, (2003).
  3. D.X. Li, W.J. Thomson, "Tetragonal to orthorhombic transformation during mullite formation, Journal of materials research", Vol.6, pp. 819-824, (1991).
  4. H. Schneider, K. Okada, "Mullite and mullite ceramics", John Wiley & Sons, (1994).
  5. P. Dokko, J.A. Pask, K. Mazdiyasni, "High‐Temperature Mechanical Properties of Mullite Under Compression", Journal of the American Ceramic Society, Vol. 60, pp. 150-155, (1977).
  6. C.B. Carter, M.G. Norton, "Ceramic materials: science and engineering", Springer Science & Business Media, (2007).
  7. F. Griggio, E. Bernardo, P. Colombo, G. Messing, "Kinetic studies of mullite synthesis from alumina nanoparticles and a preceramic polymer", Journal of the American Ceramic Society, Vol. 91, 2529-2533, (2008).
  8. B. Kanka, H. Schneider, "Aluminosilicate fiber/mullite matrix composites with favorable high-temperature properties", Journal of the European Ceramic Society, Vol. 20, pp. 619-623, (2000).
  9. K. Moritz, R. Herbig, T. Damjanović, C. Argirusis, G. Borchardt, "Development of mullite and mullite/Al2O3 precursor sols for electrophoretic deposition of oxidation protection coatings", Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 350, pp.1321, (2009).
  10. N.H. Golshan, B.E. Yekta, V. Marghussian, "Crystallization and optical properties of a transparent mullite

ass ceramic, " Optical Materials, Vol. 34, pp. 596-599, (2012).

  1. I.A. Aksay, D.M. Dabbs, M. Sarikaya, "Mullite for structural, electronic, and optical applications", Journal of the American Ceramic Society, Vol. 74, pp. 2343-2358, (1991).
  2. Y. Zhang, Y. Ding, J. Gao, J. Yang, "Mullite fibres prepared by sol–gel method using polyvinyl butyral", Journal of the European Ceramic Society, Vol. 29, pp. 1101-1107, (2009).
  3. J. Leivo, V. Meretoja, M. Vippola, E. Levänen, P. Vallittu, T.A. Mäntylä, "Sol–gel derived aluminosilicate coatings on alumina as substrate for osteoblasts", Acta biomaterialia, Vol. 2, pp. 659-668, (2006).
  4. J.A. Haynes, M.J. Lance, K.M. Cooley, M.K. Ferber, R.A. Lowden, D.P. Stinton, "CVD Mullite Coatings in High‐Temperature, High‐Pressure Air–H2O", Journal of the American Ceramic Society, Vol. 83, pp. 657-659, (2000).
  5. L.S. Cividanes, T.M. Campos, L.A. Rodrigues, D.D. Brunelli, G.P. Thim, "Review of mullite synthesis routes by sol–gel method", Journal of Sol-Gel Science and Technology, Vol. 55, pp. 111-125, (2010).
  6. K. Okada, N. ŌTsuka, J. Ossaka, "Characterization of Spinel Phase Formed in the Kaolin‐Mullite Thermal Sequence", Journal of the American Ceramic Society, Vol. 69, pp. 251-253, (1986).
  7. O. Burgos‐Montes, R. Moreno, M.T. Colomer, J.C. Farinas, "Synthesis of mullite powders through a suspension combustion process", Journal of the American Ceramic Society, Vol. 89, pp. 484-489, (2006).
  8. I. Buljan, C. Kosanović, D. Kralj, "A novel synthesis of nano-sized mullite from aluminosilicate precursors", Journal of alloys and compounds, Vol. 509, pp. 8256-8261, (2011).
  9. J. Leivo, M. Lindén, J.M. Rosenholm, M. Ritola, C.V. Teixeira, E. Levänen, T.A. Mäntylä, "Evolution of aluminosilicate structure and mullite crystallization from homogeneous nanoparticulate sol–gel precursor with organic additives", Journal of the European Ceramic Society, Vol. 28, pp.1749-1762, (2008).
  10. I. Low, R. McPherson, "The origins of mullite formation", Journal of materials science, Vol. 24, pp.926-936, (1989).
  11. D.W. Hoffman, R. Roy, S. Komarneni, "Diphasic Xerogels, A New Class of Materials: Phases in the System Al2O3‐SiO2", Journal of the American Ceramic Society, Vol. 67, pp. 468-471, (1984).
  12. F. Mizukami, K. Maeda, M. Toba, T. Sano, S.-i. Niwa, M. Miyazaki, K. Kojima, "Effect of organic ligands used in sol-gel process on the formation of mullite", Journal of Sol-Gel Science and Technology, Vol. 8, pp. 101-106, (1997).
  13. T.C. de Oliveira, C.A. Ribeiro, D.D. Brunelli, L.A. Rodrigues, G.P. Thim, "The kinetic of mullite crystallization: Effect of water content", Journal of Non-Crystalline Solids, Vol. 356, 2980-2985, (2010).
  14. W.G. Fahrenholtz, S.L. Hietala, P. Newcomer, N.R. Dando, D.M. Smith, C.J. Brinker, "Effect of physical structure on the phase development of aluminosilicate gels", Journal of the American Ceramic Society, Vol. 74, pp. 2393-2397, (1991).
  15. J.-E. Lee, J.-W. Kim, Y.-G. Jung, C.-Y. Jo, U. Paik, "Effects of precursor pH and sintering temperature on synthesizing and morphology of sol–gel processed mullite", Ceramics international, Vol. 28, 935-940, (2002).
  16. J.C. Huling, G.L. Messing, "Epitactic nucleation of spinel in aluminosilicate gels and its effect on mullite crystallization", Journal of the American Ceramic Society, Vol. 74, pp. 2374-2381, (1991).
  17. E. Tkalcec, H. Ivankovic, R. Nass, H. Schmidt, "Crystallization kinetics of mullite formation in diphasic gels containing different alumina components", Journal of the European Ceramic Society, Vol. 23, pp. 1465-1475, (2003).
  18. A.K. Chakravorty, "Effect of pH on 980 C spinel phase-mullite formation of Al2O3-SiO2 gels", Journal of materials science, Vol. 29, pp. 1558-1568, (1994).
  19. D. Cassidy, J. Woolfrey, J. Bartlett, B. Ben-Nissan, "The effect of precursor chemistry on the crystallization and densification of sol-gel derived mullite gels and powders", Journal of Sol-Gel Science and Technology, Vol. 10, pp. 19-30, (1997).
  20. G. Anilkumar, U. Hareesh, A. Damodaran, K. Warrier, "Effect of seeds on the formation of sol-gel mullite", Ceramics international, Vol. 23, pp. 537-543, (1997).
  21. M. Bartsch, B. Saruhan, M. Schmücker, H. Schneider, "Novel Low‐Temperature Processing Route of Dense Mullite Ceramics by Reaction Sintering of Amorphous SiO2‐Coated γ‐Al2O3 Particle Nanocomposites", Journal of the American Ceramic Society, Vol. 82, pp. 1388-1392, (1999).
  22. H. Schneider, S. Komarneni, "Mullite", John Wiley & Sons, pp. 71-140, (2006).
  23. H. Schneider, D. Voll, B. Saruhan, J. Sanz, G. Schrader, C. Rüscher, A. Mosset, "Synthesis and structural characterization of non-crystalline mullite precursors", Journal of non-crystalline solids, Vol. 178, pp. 262-271, (1994).
  24. H. Kozuka, M. Kajimura, T. Hirano, K. Katayama, Crack-free, "Thick ceramic coating films via non-repetitive dip-coating using polyvinylpyrrolidone as stress-relaxing agent", Journal of Sol-Gel Science and Technology, Vol. 19, pp. 205-209, (2000).
  25. K. Kajihara, T. Yao, "Macroporous morphology of the titania films prepared by a sol-gel dip-coating method from the system containing poly (ethylene glycol). III. Effect of chemical additives", Journal of sol-gel science and technology, Vol. 16, pp. 257-266, (1999).
  26. K. Kajihara, K. Nakanishi, "Macroporous morphology of titania films prepared by sol-gel dip-coating method from a system containing poly (ethylene glycol) and poly (vinylpyrrolidone) ", Journal of Materials Research, Vol. 16, pp. 58-66, (2001).
  27. M. Yoshida, P.N. Prasad, "Sol− gel-processed SiO2/TiO2/poly (vinylpyrrolidone) composite materials for optical waveguides", Chemistry of materials, Vol.8, pp. 235-241, (1996).
  28. J. Wu, H. Lin, J.-B. Li, X.-B. Zhan, J.-F. Li, "Fabrication and characterization of electrospun mullite nanofibers", Materials Letters, Vol. 63, 2309-2312, (2009).
  29. K. MacKenzie, R. Meinhold, J. Patterson, H. Schneider, M. Schmücker, D. Voll, "Structural evolution in gel-derived mullite precursors", Journal of the European Ceramic Society, Vol. 16, 1299-1308, (1996).
  30. M.M. Pereira, L.L. Hench, "Mechanisms of hydroxyapatite formation on porous gel-silica substrates", Journal of Sol-Gel Science and Technology, Vol.7, pp. 59-68, (1996).
  31. T.J. Webster, C. Ergun, R.H. Doremus, R.W. Siegel, R. Bizios, "Enhanced functions of osteoblasts on nanophase ceramics", Biomaterials, Vol. 21, pp. 1803-1810, (2000).
  32. J. Cihlář, "Hydrolysis and polycondensation of ethyl silicates. 1. Effect of pH and catalyst on the hydrolysis and polycondensation of tetraethoxysilane (TEOS) ", Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 70, pp. 239-251, (1993).
  33. H.-J. Kleebe, G. Hilz, G. Ziegler, "Transmission electron microscopy and electron energy-loss spectroscopy characterization of glass phase in sol-gel-derived mullite", Journal of the American Ceramic Society, Vol. 79, pp. 2592-2600, (1996).
  34. D. Suttor, H.-J. Kleebe, G. Ziegler, "Formation of mullite from filled siloxanes", Journal of the American Ceramic Society, Vol. 80, pp. 2541-2548, (1997).
  35. F. Kermani, S.M. Beidokhti, F. Baino, Z. Gholamzadeh-Virany, M. Mozafari, S. Kargozar, "Strontium-and cobalt-doped multicomponent mesoporous bioactive glasses (MBGS) for potential use in bone tissue engineering applications", Materials, Vol. 13, pp. 1-20, (2020).
  36. S. Shorvazi, F. Kermani, S. Mollazadeh, A. Kiani-Rashid, S. Kargozar, A. Youssefi, "Coating Ti6Al4V substrate with the triple-layer glass-ceramic compositions using sol–gel method; the critical effect of the composition of the layers on the mechanical and in vitro biological performance", J. Sol. Gel Sci. Technol., Vol. 94, pp.743-753, (2020).
  37. F. Kermani, S. Kargozar, Z. Tayarani-Najaran, A. Yousefi, S.M. Beidokhti, M. H. Moayed, "Synthesis of nano HA/βTCP mesoporous particles using a simple modification in granulation method", Mater. Sci. Eng. C, Vol. 96, pp. 859-871, (2019).
  38. F. Kermani, A. Gharavian, S. Mollazadeh, S. Kargozar, A. Youssefi, J. Vahdati Khaki, "Silicon-doped calcium phosphates; the critical effect of synthesis routes on the biological performance", Materials Science & Engineering C, Vol. 111, pp.110828, (2018).
  39. F. Kermani, S. Mollazadeh, S. Kargozar, J. Vahdati Khakhi, "Solution combustion synthesis (SCS) of theranostic ions doped biphasic calcium phosphates; kinetic of ions release in simulated body fluid (SBF) and reactive oxygen species (ROS) generation", Materials Science and Engineering: C, Vol. 118, pp. 111533, (2021).
  40. Faezeh Darvishian Haghighi, Sahar Mollazadeh Beidokhti, Zahra Tayarani Najaran, Samaneh Sahebian Saghi, "Highly improved biological and mechanical features of bioglass-ceramic/ gelatin composite scaffolds using a novel silica coverage", Ceramics International, Vol. 47, pp. 14048-14061, (2021).
  41. 51. مائده نوری ها، سارا شوروزی، سحر ملازاده بیدختی، علیرضا کیانی رشید،"بررسی روند تبلور ترکیبات آلومیناسیلیکاتی در سیستم" SiO2-Al2O3، نشریه مهندسی متالورژی و مواد، دانشگاه فردوسی مشهد (1398).