Correlation between Twinning and Surface Rumpling Phenomenon during Plastic Deformation of Austenitic Manganese Steel

Document Type : Original Articles

Authors

Abstract

In this paper, the correlation between the surface rumpling and cracking phenomena with twinning mechanism during plastic deformation of Hadfield steel has been investigated. The effect of stacking fault energy and the amount of strain are evaluated. The experimental samples with specific amounts of carbon, manganese and aluminum resulting in different stacking fault energies, were produced using investment casting process. The tensile tests were conducted at ambient temperature. The microscopic and macroscopic investigations were done using optical and scanning electron microscopes. The observations have shown that surface crinkling of austenitic manganese steels is related to twining mechanism during plastic deformation. This plastic deformation mechanism causes rotation and inhomogeneous deformation of the grains and therefore, surface grains with free surfaces were becoming more crinkled and cracked. It was observed that crinkling and cracking phenomena takes place more and coarser with an increase in the strain.

Keywords


1. ASM Handbook, Vol. 1, 10th Edition, Properties and Selection: Irons, Steels, and High Performance Alloys, Section: Specialty Steels and Heat-Resistant Alloys: Austenitic Manganese Steels,(2005).
2. Dastur, Y.N. and Leslie, W.C., "Mechanism of work hardening in Hadfield manganese steel", Metallurgical Transaction A, Vol. 12, 749-759, May, (1981).
3. Asgari, S., El-Danaf, E., Kalidindi, S.R. and Doherty, R.D., "Strain hardening regimes and microstructural evolution during large strain compression of low stacking fault energy FCC alloys that form deformation twins", Metallurgical and Materials Transactions A, Vol. 28, 1781-1795, September, (1997).
4. Kalidindi, S.R., "Modeling the strain hardening response of low SFE FCC alloys", International Journal of Plasticity, Vol. 14, No. 12, 1265-1277, (1998).
5. Karaman, I., Sehitoglu, H., Gall, K., Chumlyakov, Y.I. and Maier, H.J., "Deformation of single crystal Hadfield steel by twinning and slip", ActaMaterialia, Vol. 48, 1345-1359, (2000).
6. Karaman, I., Sehitoglu, H., Chumlyakov, Y.I., Maier, H.J. and Kireeva, I.V., "Extrinsic stacking faults and twinning in Hadfield manganese steel single crystals", ScriptaMateriala, Vol. 44, 337–343, (2001).
7. Abbasi, M., Kheirandish, Sh., Kharrazi, Y. and Hejazi, J., "On the comparison of the abrasive wear behavior of aluminum alloyed and standard Hadfield steels", Wear, 268, 202-207, (2010).
8. Karaman, I., Sehitoglu, H., Beaudoin, A.J., Chumlyakov, Y.I., Maier, H.J. and Tomea, C.N., "Modeling the deformation behavior of Hadfield steel single and polycrystals due to twinning and slip", ActaMaterialia, Vol. 48, 2031-2047, (2000).
9. Bayraktar, E., Khalid, F.A. and Levaillant, C., "Deformation and fracture behaviour of high manganese austenitic steel", Journal of Materials Processing Technology, Vol. 147, 145-154, ( 2004).
10. Lai H.J. and Wan C.M., "The study of deformation twins in the austenitic Fe-Mn-C and Fe-Mn-Al-C alloys", Scripta Metallurgica, Vol. 23, Issue 2, 179-182, February, (1989).
11. Zuidema, B.K., Subramanyam, D.K. and Leslie, W.C., "The effect of aluminum on the work hardening and wear resistance of Hadfield manganese steel", Metallurgical Transaction A, Vol. 18, 1629-1639, September, (1987).
12. Canadinc, D., Sehitoglu, H., Maier, H.J. and Chumlyakov, Y.I., "Strain hardening behavior of aluminum alloyed Hadfield steel single crystals", ActaMaterialia, Vol. 53, 1831–1842, (2005).
13. Rittel, D. and Roman, I., "Tensile fracture of coarse-grained cast austenitic manganese steels", Metallurgical Transaction A, Vol. 19, 2269-2277, September, (1988).
14. Rittel, D. and Roman, I., "Tensile deformation of coarse-grained cast austenitic manganese steels", Materials Science and Engineering A, Vol. 110, 77-87, March, (1989).
15. Abbasi, M., Kheirandish, Sh., Kharrazi, Y. and Hejazi, J., "The fracture and plastic deformation of aluminum alloyed Hadfiled steels", Journal of Materials Science and Engineering A, Vol. 513-514, 72-76, (2009).
16. Allain, S., Chateau, J.P., Bouaziz, O., Migot, S. and Guelton, N., "Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe–Mn–C alloys", Materials Science and Engineering A, Vol. 387–389, 158–162, (2004).
17. عباسی م.، بررسی تاثیر آلومینیم برساختار وخواص مکانیکی فولادهای آستنیتی منگنزی، پایان نامه دکتری، دانشگاه علم وصنعت ایران، (1388).
18. ASM Handbook, Vol. 9, Metallography and Microstructures, Austenitic Manganese Steel Castings, (2004).
19. هرتز برگ، رد.، تغییرشکل و مکانیک شکست مواد وآلیاژهای مهندسی ،ترجمه علی کبر اکرامی،موسسه انتشارات علمی دانشگاه صنعتی شریف، (1385).
20. سجادی، س .ع .ک.، رفتار مکانیکی مواد، دانشگاه فردوسی مشهد، (1384).
21. Allain, S., Chateau, J.P. and Bouaziz, O., "A physical model of the twinning-induced plasticity effect ina high manganese austenitic steel", Materials Science and Engineering A, Vol. 387–389, 143–147,(2004).
22. Oh, B.W., Cho, S.J., Kim, Y.G., Kim, Y.P., Kim, W.S. and Hong, S.H., "Effect of aluminum ondeformation mode and mechanical properties of austenitic Fe-Mn-Cr-Al-C alloys", Materials Scienceand Engineering A, Vol. 197, No. 2, 147-156, (1995).
23. Bouaziz, O., Allain, S., Scott, C.P., Cugy, P., Barbier, D., High manganese austenitic twinning inducedplasticity steels: A review of the microstructure properties relationships”, Current Opinion in SolidState and Materials Science 15, 141–168, (2011).
CAPTCHA Image