The Effect of Interaction Between Hardness, Inclusion and Microstructures on the Fatigue Behavior of Steel

Document Type : Original Articles

Authors

Yazd University, Yazd, Iran

Abstract

In this study, the fatigue behavior of alloy steels with different hardness values was tested. Results showed that the fatigue limit increases by the increment of hardness up to 400 Vickers whereas it drops when the hardness value exceeds 400 Vickers. Fractographic observations using scanning electron microscopy revealed non-metallic inclusions as the dominant fatigue crack initiation sites. By predicting the threshold stress intensity, with the aid of scanning electron microscope observations of the fracture surface and comparing the fatigue limit of the steels, the appropriate effect of hardness on the fatigue behavior of the steel can be presented. Finally, simple and accurate models were proposed for the estimation of the fatigue limit by means of hardness.

Keywords


1. Shimatani Y., Shiozawa K., Nakada T., Yoshimoto T., "Effect of surface residual stress and inclusion size on fatigue failure mode of matrix HSS in very high cycle regime", Procedia Engineering, Vol. 2, pp. 873-882, (2010).
2. Zhang J.M., Li S.X., Yang Z.G., Li G.Y., Hui W.J., Weng Y.Q., "Influence of inclusion size on fatigue behavior of high strength steels in the giga cycle fatigue regime", International Journal of Fatigue, Vol. 29, pp. 765-771, (2007).
3. Itoga H., Tokaji H., Nakajima M., Ko H.N., "Effect of surface roughness on step-wise S-N characteristics in high strength steel", International Journal of Fatigue, Vol. 25, pp. 379-385, (2003).
4. Di Schino A., Kenny J.M., "Grain size dependence of the fatigue behavior of ultrafine-grained AISI 304 stainless steel", Mater. Letters, Vol. 57, pp. 3182-3185, (2003).
5. Murakami Y., "Metal Fatigue: Effects of Small Defects and Non-Metallic Inclusions", Elsevier, First Edition, Oxford, pp. 11-104, (2002).
6. Casagrande A., Cammarota G.P., Micele L., "Relationship between fatigue limit and Vickers hardness in steels", Material Science and Engineering A, Vol. 528, pp. 3468-3473, (2011).
7. Saberifar S., Mashreghi A.R., "A Novel Method for the Prediction of Critical Inclusion Size Leading to Fatigue Failure", Metallurgical and Materials Transactions B, Vol. 43, pp. 603-608, (2012).
8. Kang M., Aono Y., Noguchi H., "Effect of prestrain on and prediction of fatigue limit in carbon steel", International Journal of Fatigue, Vol. 29, pp. 1855–1862, (2007).
9. Zhao A., Xie J., Sun Ch., Lei Zh., Hong Y., " Effects of strength level and loading frequency on very-high-cycle fatigue behavior for a bearing steel", International Journal of Fatigue, Vol. 38, pp. 46–56, (2012).
10. قندهاری فردوسی م.ر.، حسینی بنهنگی پ.، نخعی د.، مکارم م.، "شکست نگاری فولاد میکرو آلیاژی30 MSV6در تنش‌های مختلف خستگی"، پنجمین همایش مشترک انجمن مهندسین متالورژی و جامعه ریخته گری ایران، (1390).
11. Soleimani S.M.Y, Mashreghi A.R., Ghasemi S.S., Moshrefifar M., "The effect of plasma nitriding on the fatigue behavior of DIN 1.2210 cold work tool steel", Materials and Design, Vol. 35, pp. 87–92, (2012).
12. Chapetti M.D., Tagawa T., Miyata T., "Ultra-long cycle fatigue of high-strength carbon steels part II:estimation of fatigue limit for failure from internal inclusions", Materials Science and Engineering A, Vol. 356, pp. 236-244, (2003).
13. دهقان طزرجانی م.، مشرقی ع.ر.، قاسمی بنادکوکی س.ص.، مصلایی پور یزدی م.، "بررسی اثر ریزساختارهای مختلف بر رفتار کششی و مکانیزم شکست فولاد ابزار سردکار"DIN 1.2210، دومین همایش بین المللی و هفتمین همایش مشترک انجمن مهندسی متالورژی ایران و انجمن علمی ریخته گری ایران، (1392).
14. Tanaka K., Akinawa Y., "Fatigue crack propagation behavior derived from S–N data in very high cycle regime", Fatigue Fract. Eng. Mater. Struc., Vol. 25, pp. 775–784, (2002).
15. Yoshiaki A., Nobuyuki M., Hirotaka T., Keisuke T., "Notch effect on fatigue strength reduction of bearing steel in the very high cycle regime", International Journal of Fatigue, Vol. 28, pp. 1555–1565, (2006).
16. Shiozawa K., Murai M., Shimatani Y., Yoshimoto T., "Transition of fatigue failure mode of Ni–Cr–Mo low-alloy steel in very high cycle regime", International Journal of Fatigue, Vol. 32, pp. 541–550, (2010).
17. Murakami Y., Endo T., "The effects of small defects on the fatigue strength of hard steels", Materials experimentation and design in fatigue, Proc. Fatigue, pp. 431-440, (1981).
18. ASM Metals Handbook Fractography, ASM Int., Vol. 12, (1987).
19. Bakhtiari R., Ekrami A., "The effect of bainite morphology on the mechanical properties of a high bainite dual phase (HBDP) steel", Materials Science and Engineering A, Vol. 525, pp. 159–165, (2009).
20. Echeverry A., Rodriguez-Ibabe J.M., "The Role of Grain Size in Brittle Particle Induced Fracture of Steels", Materials Science and Engineering A, Vol. 346, pp. 149-158, (2003).
21. Rosenfield A., Shetty D.K., "Upper Ductile-Brittle Transition Region", Eng. Frac. Mech., Vol. 17, pp 461-470, (1983).
22. گلعذانی ع.س.، عبداله زاده ا.، میرزایی م.، "مقایسه خواص مکانیکی ریز ساختار مارتنزیت بازگشت داده شده و ریزساختار فریت-بینیت- مارتنزیت در فولاد"42CrMo4، مجلة فنی و مهندسی مدرس- مکانیک، شمارة 39، (1389).
23. Hertzberg R.W., "Deformation and Fracture Mechanics of Engineering Materials", J. Willy & Sons. Inc., United States of America, (1996).
CAPTCHA Image