Spark Plasma Sintering of ZrB2-Based Ceramic Reinforced with SiC Particles and Whiskers

Document Type : Original Articles

Authors

1 Department of Mechanical Engineering, University of Mohaghegh Ardabili, Ardabil, Iran.

2 Member of Researchers Foundation of University of Mohaghegh Ardabili, Ardabil, Iran.

Abstract

Effects of silicon carbide as the reinforcement on densification and mechanical properties of zirconium diboride-based ultra-high temperature composites were studied. A monolithic ZrB2 ceramic (as the baseline) and three ZrB2-based composites reinforced with 25 vol% SiC in different morphologies (particulate, whisker and particulate/whisker mixture) were fabricated by spark plasma sintering route. The sintering process was conducted at 1900 °C for 7 min under 40 MPa. A relative density of ~96% was obtained for the ZrB2 ceramic but the other composites approached their theoretical densities. The hardness and fracture toughness values of SiC reinforced samples were higher than those for the monolithic one. The simultaneous addition of SiC particulates/whiskers showed a synergistic effect on the enhancement of mechanical performance of composite.

Keywords


1.    Kaufman, L. and Clougherty, E.V., "Investigation of boride compounds for very high temperature applications", RTD-TRD-N69-73497, Part XXXVII, ManLabs Inc., Cambridge, MA, (1963).
2.    Clougherty, E. V., Kalish, D. and Peters, E. T., "Research and development of refractory oxidaton resistant diborides", RTD-TRD-N63-4096, Part III, ManLabs Inc., Cambridge, MA, (1966).
3.    Gangler, J., "NASA research on refractory compounds", High Temp. High Press, Vol. 3, pp. 487-502, (1971).
4.    Cutler, R. A., "Engineering properties of borides, in Engineered materials handbook", Materials Park, OH, ASM International, Vol. 4, pp. 787-801, (1991).
5.    Mroz, C., "Annual mineral review; Zirconium diboride", Journal of the American Ceramic Society, Vol. 74, pp. 165-166, (1995).
6.    Gasch, M. J., Ellerby, D. T. and Johnson, S. M., "Ultra High Temperature Ceramic Composites", in Handbook of Ceramic Composites, Edited by N. P. Bansal. Kluwer Academic Publishers, Boston, pp. 198-199, (2005).
7.    Monteverde, F., Bellosi, A. and Scatteia, L., "Processing and properties of ultra high temperature ceramics for space applications", Materials Science and Engineering, Vol. 485, No. 1-2, pp. 415-421, (2008).
8.    Chamberlain, A. L., Fahrenholtz, W. G., Hilmas, G. E. and Ellerby, D. T., "High-strength zirconium diboride-based ceramics", Journal of the American Ceramic Society, Vol. 87, No. 6, pp. 1170-1172, (2004).
9.    Henderson, S., Fehrenholtz, W. G., Hilmas, G. E. and Marschail, J., "High-velocity impact resistance of ZrB2-SiC, in Mechanical Properties and Performance of Engineering Ceramics II", Ceramic Engineering and Science Proceedings, Vol. 27, pp. 3-10, (2008).
10. Zhang, H., Yan, Y., Liu, X. and Jiang, D., "Properties of ZrB2–SiC Ceramics by pressureless sintering", Journal of the American Ceramic Society, Vol. 92, No. 7, pp. 1599-1602, (2009).
11. Tripp, W. C., Davis, H. H. and Graham, H. C., "Effect of an SiC addition on the oxidation of ZrB2", American Ceramic Society Bulletin, Vol. 52, No. 8, pp. 612-616, (1973).
12. Fahrenholtz, W. G., Hilmas, G. E., Talmy, I. G. and Zaykoski, J. A., "Refractory Diborides of Zirconium and Hafnium", Journal of the American Ceramic Society, Vol. 90, No. 5, pp. 1347-1364, (2007).
13. Loehman, R., Corral, E., Dumm, H. P., Kotula, P. and Tandon, R., "Ultrahigh temperature ceramics for hypersonic vehicle applications", Sandia National Laboratories Report, California, pp. 2006–2925 (2006).
14. Shugart,  K. and Opila E., " SiC Depletion in ZrB2–30 vol% SiC at Ultrahigh Temperatures", Journal of the American Ceramic Society, Vol. 98, No. 5, pp. 1673-1683, (2015).
15. Guo, S. Q., "Densification of ZrB2-based composites and their mechanical and physical properties: A review", Journal of the European Ceramic Society, Vol. 29, No. 6, pp. 995-1011, (2009).
16. Liu, Q., Han, W., Zhang, X., Wang, S. and Han, J., "Microstructure and mechanical properties of ZrB2-SiC composites", Materials Letters, Vol. 63, pp. 1323-1325, (2009).
17. Cao, M., Wang, S. and Han, W., "Influence of nanosized SiC particle on the fracture toughness of ZrB2-based nanocomposite", Materials Science and Engineering A, Vol. 527, pp. 2925–2928, (2010).
18. Silvestroni, L., Sciti, D., Melandri, C., Guicciardi, S., "Toughened ZrB2-based ceramics through SiC whisker or SiC chopped fiber additions", Journal of the European Ceramic Society, Vol. 30, pp. 2155–2164, (2010).
19. Zhang, X., Xu, L., Du, S., Han, W. and Han, J., "Crack-healing behavior of zirconium diboride composite reinforced with silicon carbide whiskers", Scripta Materialia, Vol. 59, pp. 1222–1225, (2008).
20. Zhang, P., Hu, P., Zhang, X., Han, J. and Meng, S., "Processing and characterization of ZrB2–SiCw ultra-high temperature ceramics", Journal of Alloys and Compounds, Vol. 472, pp. 358–362, (2009).
21. Xiao, K., Guo, Q., Liu, Z., Zhao, S. and Liu, L., "Microstructure and mechanical properties of silicon carbide monofilament reinforced zirconium diboride matrix composites", Ceramics International, Vol. 39, pp. 2107-2110, (2013).
22. Hulbert, D. M., Jiang, D., Dudina, D. V. and Mukeherjee, A. K., "The synthesis and consolidation of hard materials by spark plasma sintering", International Journal of Refractory Metals and Hard Materials, Vol. 27, No. 2, pp. 367-375, (2009).
23. Bellosi, A., Monteverde, F. and Sciti, D., "Fast densification of ultra‐high‐temperature ceramics by spark plasma sintering", International Journal of Applied Ceramic Technology, Vol. 3, No. 1, pp. 32-40, (2006).
24. Pazhouhanfar, Y., Sabahi Namini, A., Shaddel, S., Ahmadi, Z. and Shahedi Asl, M., "Combined role of SiC particles and SiC whiskers on the characteristics of spark plasma sintered ZrB2 ceramics", Ceramics International, Vol. 46, pp. 5773-5778, (2020).
CAPTCHA Image