Superior Improvement of Microstructure and Mechanical Properties of a Medium Silicon Low Alloy 35CHGSA Steel Under Quenching and Partitioning Heat Treatment in Comparison to Conventional Quenching and Tempering Condition

Document Type : Original Articles

Authors

1 Department of Mining and Metallurgical Engineering, Yazd University, University Blvd, Safayieh, Yazd, PO Box: 98195 – 741, Iran

2 Department of Materials Science and Engineering, Ferdowsi University of Mashhad, Mashhad, Iran.

Abstract

In this experimental work, the improvement of microstructure and mechanical behavior of medium silicon low alloy 35CHGSA steel have been investigated under quenching and partitioning heat treatment in comparison to conventional direct water quenching and tempering condition. For this purpose, the samples of medium silicon low alloy 35CHGSA steel were first austenitized at 900˚C for 15 min and then cooled to room temperature. By the following two heat treatment methods. In the first method, the austenitized, samples were directly quenched in water and then tempered at 500°C for 60 min (Q&T). In the second method, the austenitized samples were quenched in the molten salt bath at 230°C for 1 min in order to form some martensite and then heated to 400°C for 12 min for carbon partitioning from martensite to the adjacent remaining austenite areas and finally water quenching (Q&P). Hardness and tensile tests were performed with phase analysis by XRD and microstructural observations under optical microscopy, field emission scanning electron microscopy (FESEM) equipped with energy-dispersive spectrometry (EDS), followed with electron diffraction via transmission electron microscope (TEM). The results show that the Q&P heat treatment process has been associated with the significant improvement in microstructure and mechanical properties of medium silicon low alloy steel compared to conventional water quenching and tempering condition. The product of ultimate tensile strength multiple elongation, which is a good criterion for design and development of advanced high strength steels, is significantly increased from 16.4 (Q&T samples) to 25.5% GPa (Q&P samples).

Keywords

Main Subjects


  1. Frómeta, D., Parareda, S., Lara, A., Molas, S., Casellas, D. and Jonsén, P., "Identification of fracture toughness parameters to understand the fracture resistance of advanced high strength sheet steels", Engineering fracture mechanics, Vol. 229, p. 10, (2020).
  2. Nanda, T., Singh, V., Singh, G., Singh, M. and Kumar, B. R., "Processing routes, resulting microstructures, and strain rate dependent deformation behaviour of advanced high strength steels for automotive applications", Archives of Civil and Mechanical Engineering, Vol. 21, pp. 1-24, (2021).
  3. Frómeta, D., Lara, A., Grifé, L., Dieudonné, T., Dietsch, P. and Rehrl, J., "Fracture Resistance of Advanced High-Strength Steel Sheets for Automotive Applications", Metallurgical and Materials Transactions A, Vol. 52, pp. 840-856, (2021).
  4. Quazi, M., "An Overview of Laser Welding of High Strength Steels for Automotive Application", KA Manoharan, MM Quazi, MN Bashir, MNM Salleh, AQ Zafiuddin, and R. Linggamm,“An Overview of Laser Welding of High Strength Steels for Automotive Application”, International Journal of Technology and Engineering Studies, Vol. 6, pp. 23-40, (2020).
  5. Venezuela, J., Lim, F. Y., Liu, L., James, S., Zhou, Q. and Knibbe, R., "Hydrogen embrittlement of an automotive 1700 MPa martensitic advanced high-strength steel", Corrosion Science, Vol. 171, p. 108726, (2020).
  6. KEELE, R. and KIMICHI, M., "Advanced High-Strength Steels: Application Guidelines", World Auto Steel, (2014).
  7. Nanda, T., Singh, V., Singh, V., Chakraborty, A. and Sharma, S., "Third generation of advanced high-strength steels: Processing routes and properties", Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, Vol. 233, pp. 209-238, (2019).
  8. Singh, S. and Nanda, T., "A Review: Production of Third Generation Advance High Strength Steels", International Journal of Science and Research, Vol. 2, pp. 388-392, (2014).
  9. Caballero, F. G., Allain, S., Cornide, J., Velásquez, J. P., Garcia-Mateo, C. and Miller, M. K., "Design of cold rolled and continuous annealed carbide-free bainitic steels for automotive application", Materials & Design, Vol. 49, pp. 667-680, (2013).
  10. Schmitt, J.-H. and Iung, T., "New developments of advanced high-strength steels for automotive applications", Comptes Rendus Physique, Vol. 1, pp. 641-656, (2018).
  11. Caballero, F. G., Poplawsky, J. D., Yen, H. W., Rementeria, R., Morales-Rivas, L. and Yang, J. R., "Complex nano-scale structures for unprecedented properties in steels", In Materials Science Forum, pp. 2401-2406, (2017).
  12. Chen, S., Hu, J., Shan, L., Wang, C., Zhao, X. and Xu, W., "Characteristics of bainitic transformation and its effects on the mechanical properties in quenching and partitioning steels", Materials Science and Engineering: A, Vol. 803, p. 140706, (2021).
  13. Vercruysse, F., Celada-Casero, C., Linke, B. M., Verleysen, P. and Petrov, R. H., "The effect of Nb on the strain rate and temperature dependent behaviour of quenching & partitioning steels", Materials Science and Engineering: A, Vol. 800, p. 140293, (2021).
  14. Matlock, D. K., Brautigam, V. E. and Speer, J. G., "Application of the quenching and partitioning (Q&P) process to a medium-carbon, high-Si microalloyed bar steel", Materials Science Forum, pp. 1089-1094, (2003).
  15. Speer, J., Matlock, D. K., De Cooman, B. C. and Schroth, J., "Carbon partitioning into austenite after martensite transformation", Acta materialia, Vol. 51, pp. 2611-2622, (2003).
  16. Speer, J., Streicher, A., Matlock, D., Rizzo, F. and Krauss, G., "Quenching and partitioning: a fundamentally new process to create high strength trip sheet microstructures", Symposium on the Thermodynamics, Kinetics, Characterization and Modeling of: Austenite Formation and Decomposition, pp. 505-522, (2003).
  17. Rizzo, F., Edmonds, D., He, K., Speer, J., Matlock, D. and Clarke, A., "Carbon enrichment of austenite and carbide precipitation during the quenching and partitioning (Q&P) process", Proceedings of the International Conference on Solid to Solid Phase Transformations in Inorganic Material, Phoenix, Arizona, (2005).
  18. Edmonds, D., He, K., Rizzo, F., De Cooman, B., Matlock, D. and Speer, J., "Quenching and partitioning martensite—A novel steel heat treatment", Materials Science and Engineering: A, Vol. 438, pp. 25-34, (2006).
  19. Gerdemann, F., Speer, J. and Matlock, D., "Microstructure and hardness of steel grade 9260 heat-treated by the quenching and partitioning (Q&P) process", Materials Science and Technology, Vol. 1, pp. 439-449, (2004).
  20. Diego-Calderón, I., Santofimia, M., Molina-Aldareguia, J., Monclús, M. and Sabirov, I., "Deformation behavior of a high strength multiphase steel at macro-and micro-scales", Materials Science and Engineering: A, Vol. 611, pp. 201-211, (2014).
  21. De Knijf, D., Petrov, R., Föjer, C. and Kestens, L. A., "Effect of fresh martensite on the stability of retained austenite in quenching and partitioning steel", Materials Science and Engineering: A, Vol. 615, pp. 107-115, (2014).
  22. Zhang, J., Ding, H. and Misra, R., "Enhanced strain hardening and microstructural characterization in a low carbon quenching and partitioning steel with partial austenization", Materials Science and Engineering: A, Vol. 636, pp. 53-59, (2015).
  23. Cao, W. Q., Wang, C. Y., Shi, J. and Dong, H., "Application of quenching and partitioning to improve ductility of ultrahigh strength low alloy steel", Materials Science Forum, pp. 29-32, (2010).
  24. Seo, E. J., Cho, L., Estrin, Y. and De Cooman, B. C., "Microstructure-mechanical properties relationships for quenching and partitioning (Q&P) processed steel", Acta Materialia, Vol. 113, pp. 124-139, (2016).
  25. De Knijf, D., Puype, A., Föjer, C. and Petrov, R., "The influence of ultra-fast annealing prior to quenching and partitioning on the microstructure and mechanical properties", Materials Science and Engineering: A, Vol. 627, pp. 182-190, (2015).
  26. Kickinger, C., Suppan, C., Hebesberger, T., Schnitzer, R. and Hofer, C., "Microstructure and mechanical properties of partially ferritic Q&P steels", Materials Science and Engineering: A, Vol. 815, p. 141296, (2021).
  27. Kang, T., Zhao, Z., Liang, J., Guo, J. and Zhao, Y., "Effect of the austenitizing temperature on the microstructure evolution and mechanical properties of Q&P steel", Materials Science and Engineering: A, Vol. 771, p. 138584, (2020).
  28. Kim, J. H., Kwon, M.-H., Lee, J. S., Lee, S., Lee, K. and Suh, D.-W., "Influence of Isothermal Treatment Prior to Initial Quenching of Q&P Process on Microstructure and Mechanical Properties of Medium Mn Steel", ISIJ International, Vol. 61, pp. 518-526, (2021).
  29. Li, Z., Wu, R., Li, M., Zeng, S.-S., Wang, Y. and Xie, T., "The Effect of Quenching and Partitioning (Q&P) Heat Treatment on the Microstructure and Mechanical Properties of High Boron Steel", Materials, Vol. 14, p. 1556, (2021).
  30. Pashangeh, S., Somani, M. and Banadkouki, S. S. G., "Microstructural evolution in a high-silicon medium carbon steel following quenching and isothermal holding above and below the Ms temperature", Journal of Materials Research and Technology, Vol. 9, pp. 3438-3446, (2020).
  31. Blondé, R., Jimenez-Melero, E., Zhao, L., Wright, J., Brück, E. and Van der Zwaag, S., "Mechanical stability of individual austenite grains in TRIP steel studied by synchrotron X-ray diffraction during tensile loading", Materials Science and Engineering: A, Vol. 618, pp.280-287, (2014).
  32. Jimenez-Melero, E., Van Dijk, N., Zhao, L., Sietsma, J., Offerman, S. and Wright, J., "Characterization of individual retained austenite grains and their stability in low-alloyed TRIP steels", Acta Materialia, Vol. 55, pp. 6713-6723, (2007).
  33. Jacques, P., Delannay, F. and Ladrière, J., "On the influence of interactions between phases on the mechanical stability of retained austenite in transformation-induced plasticity multiphase steels", Metallurgical and Materials transactions A, Vol.32, pp. 2759-2768, (2001).
  34. Xiong, X., Chen, B., Huang, M., Wang, J. and Wang, L., "The effect of morphology on the stability of retained austenite in a quenched and partitioned steel", Scripta Materialia, Vol. 68, pp. 321-324, (2013).
  35. Krauss, G., "Steels: heat treatment and processing principles", ASM International, 1990, p. 497, (1990).
  36. Staňková, H., "Einfluss der inkrementellen Deformationen bei der thermomechanischen Behandlung auf die Eigenschaften von TRIP-Stählen", Eigenverlag publication. Inc., Germany, pp. 151-152, (2008).
  37. Dieter, G. E. and Bacon, D. J., "Mechanical metallurgy", McGraw-hill book company. Inc., New York, pp. 17-52, (1961).
  38. Sugimoto, K.-i., Usui, N., Kobayashi, M. and Hashimoto, S.-i., "Effects of volume fraction and stability of retained austenite on ductility of TRIP-aided dual-phase steels", ISIJ international, Vol. 32, pp. 1311-1318, (1992).
  39. Behera, A. K. and Olson, G., "Prediction of carbon partitioning and austenite stability via non-equilibrium thermodynamics in Quench and Partition (Q&P) steel", Jom, Vol. 71, pp. 1375-1385, (2019).
  40. Williamson, G. and Hall, W., "X-ray line broadening from filed aluminium and wolfram", Acta metallurgica, Vol. 1, pp. 22-31, (1953).
  41. Nouri, A., Kheirandish, S. and Saghafian, H., "Effect of silicon content on the strain hardening of dual-phase steels", Iranian Journal of Materials Science and Engineering, Vol. 5, pp. 40-49, (2008).
  42. Ono, S., Nozoe, O., Shimomura, T., Matsudo, K., Bramfitt, B. and Mangonon, P., "Metallurgy of continuous-annealed sheet steel", Proceedings of the TMS-AIME Symposium, Dallas (USA), pp. 99-115, (1982).
  43. Krauss, G., "Steels: processing, structure, and performance" Asm International, Ohio, pp. 373-400, (2015).
  44. Ayenampudi, S., Celada-Casero, C., Arechabaleta, Z., Arribas, M., Arlazarov, A. and Sietsma, J., "Microstructural Impact of Si and Ni During High Temperature Quenching and Partitioning Process in Medium-Mn Steels", Metallurgical and Materials Transactions A, Vol. 52, pp. 1321-1335, (2021).
  45. Morsdorf, L., Emelina, E., Gault, B., Herbig, M. and Tasan, C. C., "Carbon redistribution in quenched and tempered lath martensite", Acta Materialia, Vol. 205, p. 116521, (2021).
  46. Saleh, M. and Priestner, R., "Retained austenite in dual-phase silicon steels and its effect on mechanical properties", Journal of Materials Processing Technology, Vol. 113, pp. 587-593, (2001).
  47. Bakhtiari, R. and Ekrami, A., "The effect of bainite morphology on the mechanical properties of a high bainite dual phase (HBDP) steel", Materials Science and Engineering: A, Vol. 525, pp. 159-165, (2009).
  48. Sayed, A. A. and Kheirandish, S., "Affect of the tempering temperature on the microstructure and mechanical properties of dual phase steels", Materials Science and Engineering: A, Vol. 532, pp. 21-25, (2012).
  49. Beladi, H., Timokhina, I., Xiong, X.-Y. and Hodgson, P. D., "A novel thermomechanical approach to produce a fine ferrite and low-temperature bainitic composite microstructure", Acta materialia, Vol. 61, pp. 7240-7250, (2013).
  50. Hertzberg, R. W., Vinci, R. P., and Hertzberg, J. L., "Deformation and fracture mechanics of engineering materials", John Wiley & Sons, pp. 63-188, (2020).
  51. McEvily, A. and Bush, R., "An investigation of the notch–impact strength of an ausformed steel", Trans. ASM, Vol. 55, pp. 654-666, (1962).
  52. Ghatei Kalashami, A., Kermanpur, A., Najafizadeh, A., and Mazaheri, Y., "Effect of Nb on microstructures and mechanical properties of an ultrafine-grained dual phase steel", Journal of Materials Engineering and Performance, Vol. 24, pp. 3008-3017, (2015).
  53. Sodjit, S. and Uthaisangsuk, V., "Microstructure based prediction of strain hardening behavior of dual phase steels", Materials & Design, Vol. 41, pp. 370-379, (2012).
  54. He, B., Pan, S. and Huang, M., "Extra work hardening in room-temperature quenching and partitioning medium Mn steel enabled by intercritical annealing", Materials Science and Engineering: A, Vol. 797, p. 140106, (2020).
  55. Zhang, M., Li, L., Fu, R., Krizan, D. and De Cooman, B., "Continuous cooling transformation diagrams and properties of micro-alloyed TRIP steels", Materials Science and Engineering: A, Vol. 438, pp. 296-299, (2006).
  56. Arlazarov, A., Bouaziz, O., Hazotte, A., Gouné, M. and Allain, S., "Characterization and modeling of manganese effect on strength and strain hardening of martensitic carbon steels", ISIJ international, Vol. 53, pp. 1076-1080, (2013).
  57. De Moor, E., Speer, J. G., Matlock, D. K., Kwak, J.-H. and Lee, S.-B., "Effect of carbon and manganese on the quenching and partitioning response of CMnSi steels", ISIJ international, Vol. 51, pp. 137-144, (2011).

58.          Ding, R., Tang, D., Zhao, A., Guo, H., He, J. and Zhi, C., "Effect of ultragrain refinement on quenching and partitioning steels manufactured by a novel method", Materials & Design, Vol. 87, pp. 640-649, (2015).

CAPTCHA Image