Bioactivity Comparison of Silk Fibroin/Nano-Titanium Dioxide and Silk Fibroin/Nano-Titanium Dioxide Containing Flour Ions for Bone Tissue Engineering

Document Type : Original Articles

Authors

1 Department of Materials Science and Engineering, Golpayegan University of Technology, Golpayegan, Iran.

2 Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran.

3 Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.

Abstract

Bone defects and developed surgery with low injuries have conducted researches to design and produce composites containing biodegradable polymer and bioactive ceramic, introducing as a biocompatible scaffold for bone tissue engineering. In the present study, bioactive nanocomposite scaffolds of silk fibroin/titanium dioxide nanoparticles (SF/TiO2) and silk fibroin/titanium dioxide nanoparticles which contain flour ions (SF/TiO2-F) were prepared. Accordingly, flour ions were bound to TiO2 nanoparticles and both SF/TiO2 and SF/TiO2-F scaffolds were produced. Then, the bioactivity and apatite formation on the surface of prepared scaffolds were evaluated by immersing in simulated body fluid (SBF) for 28 days. As a resultant, SF/TiO2-F scaffolds showed improved bioactivity in comparison with SF/TiO2 ones, as such, after 12 days of immersion in SBF, apatite precipitations covered around 40 %  of surface of prepared scaffolds. 

Keywords


  1. Hench, L., Jones, J., "Biomaterials, artificial organs and tissue engineering". Woodhead Publishing Limited and CRC Press LLC, New York, pp. 48-58, (2005).
  2. Isa, Z. M., Schneider, G. B., Zaharias, R., Seabold, D., Stanford, C. M., "Effects of fluoride-modified titanium surfaces on osteoblast proliferation and gene expression", International Journal of Oral & Maxillofacial Implants, Vol. 21(2), pp. 203-211, (2006).
  3. Krause, D., Thomas, B., Leinenbach, C., Eifler, D., Minay, E. J., Boccaccini, A. R., "The electrophoretic deposition of Bioglass® particles on stainless steel and Nitinol substrates", Surface and Coatings Technology, Vol. 200 (16), pp. 4835-4845, (2006).
  4. Yang, Y., Zhao, Y., Tang, G., Li, H., Yuan, X., Fan, Y., "In vitro degradation of porous poly (l-lactide-co-glycolide)/β-tricalcium phosphate (PLGA/β-TCP) scaffolds under dynamic and static conditions", Polymer Degradation and Stability, Vol. 93 (10), pp. 1838-1845, (2008).
  5. Baron, R. D. D. S., "Anatomy and ultrastructure of bone", Primer on the metabolic bone diseases and disorders of mineral metabolism 4, pp. 3-10, (1999).

6. جعفری­نژاد، ش.، "عناصر پایه در فناوری نانو و نانوکامپوزیت­های پلیمری"، انتشارات سیمای دانش, (1388).

  1. Lamolle, S. F., Monjo, M., Rubert, M., Haugen, H. J., Lyngstadaas, S. P., Ellingsen, J. E., "The effect of hydrofluoric acid treatment of titanium surface on nanostructural and chemical changes and the growth of MC3T3-E1 cells", Biomaterials, Vol. 30 (5), pp. 736-742, (2009).
  2. Manso, M., Langlet, M., Fernandez, M., Vazquez, L., Martı́nez-Duart, J. M., "Surface and interface analysis of hydroxyapatite/TiO 2 biocompatible structures", Materials Science and Engineering, Vol. 23 (3), pp. 451-454, (2003).
  3. Fostad, G., Hafell, B., Førde, A., Dittmann, R., Sabetrasekh, R., Will, J., Ellingsen, J. E., Lyngstadaas, S. P., Haugen, H. J., "Loadable TiO2 scaffolds—a correlation study between processing parameters, micro CT analysis and mechanical strength", Journal of the European Ceramic Society, Vol. 29 (13), pp. 2773-2781 (2009).
  4. Barrere, F., Mahmood, T. A., De Groot, K., Van Blitterswijk, C. A., "Advanced biomaterials for skeletal tissue regeneration: Instructive and smart functions", Materials Science and Engineering, R: Reports, Vol. 59 (1), pp. 38-71, (2008).
  5. Sul, Y. T., Kang, B. S., Johansson, C., Um, H. S., Park, C. J., Albrektsson, T., "The roles of surface chemistry and topography in the strength and rate of osseointegration of titanium implants in bone", Journal of biomedical materials research Part A, Vol. 89 (4), pp. 942-950, (2009).
  6. Schmidt, C. E., Baier, J. M., "Acellular vascular tissues: natural biomaterials for tissue repair and tissue engineering", Biomaterials, Vol. 21 (22), pp. 2215-2231, (2000).
  7. Seliktar, D., Black, R. A., Vito, R. P., Nerem, R. M., "Dynamic mechanical conditioning of collagen-gel blood vessel constructs induces remodeling in vitro", Annals of biomedical engineering, Vol. 28 (4), pp. 351-362, (2000).
  8. Yan, S., Zhang, Q., Wang, J., Liu, Y., Lu, S., Li, M., Kaplan, D. L., "Silk fibroin/chondroitin sulfate/hyaluronic acid ternary scaffolds for dermal tissue reconstruction", Acta biomaterialia, Vol. 9 (6), pp. 6771-6782, (2013).
  9. Rockwood, D. N., Preda, R. C., Yücel, T., Wang, X., Lovett, M. L., Kaplan, D. L., "Materials fabrication from Bombyx mori silk fibroin", Nature protocols, Vol. 6 (10), pp. 1612-1631, (2011).
  10. Kokubo, T., Takadama, H., "How useful is SBF in predicting in vivo bone bioactivity?", Biomaterials, Vol. 27 (15), pp. 2907-2915, (2006).
  11. Fathi, M. H., Hanifi, A., Mortazavi, V., "Preparation and bioactivity evaluation of bone-like hydroxyapatite nanopowder", Journal of materials processing technology, Vol. 202 (1), pp. 536-542, (2008).
  12. Kokubo, T., Kim, H. M., Kawashita, M., "Novel bioactive materials with different mechanical properties", Biomaterials, Vol. 24 (13), pp. 2161-2175, (2003).
  13. Zhang, P., Zhang, Z., Li, W., Zhu, M., "Effect of Ti-OH groups on microstructure and bioactivity of TiO 2 coating prepared by micro-arc oxidation", Applied Surface Science, Vol. 268, pp. 381-386. (2013).
  14. Kasuga, T., Kondo, H., Nogami, M., "Apatite formation on TiO 2 in simulated body fluid", Journal of Crystal Growth, Vol. 235 (1), pp. 235-240, (2002).
  15. Xie, Y., Liu, X., Chu, P. K., Ding, C., "Nucleation and growth of calcium–phosphate on Ca-implanted titanium surface", Surface science, Vol. 600 (3), pp. 651-656, (2006).
  16. Kim, H. M., Himeno, T., Kokubo, T., Nakamura, T., "Process and kinetics of bonelike apatite formation on sintered hydroxyapatite in a simulated body fluid", Biomaterials, Vol. 26 (21), pp. 4366-4373, (2005).
  17. Diba, M., Kharaziha, M, Fathi, M. H., Gholipourmalekabadi, M., Samadikuchaksaraei, A., "Preparation and characterization of polycaprolactone/forsterite nanocomposite porous scaffolds designed for bone tissue regeneration", Composites Science and Technology, Vol. 72 (6), pp. 716-723, (2012).
  18. Sergey, V. D., "Self-setting calcium orthophosphate formulations: cements, concretes, pastes and putties", International Journal of Materials and Chemistry, Vol. 1 (1), pp. 1-48, (2011).
  19. Hong, C., Noboru, K., "A biodegradable porous composite scaffold of PGA/β-TCP for bone tissue engineering", Bone, Vol. 46 (2), pp. 386-395, (2010).

 

 

CAPTCHA Image