Synthesis and study of the pH effect on the antibacterial activity of ZnSe nanoparticles against the Escherichia coli and Pseudomonas aeruginosa gram-negative bacteria by using disc-diffusion bioassay

Document Type : Original Articles

Authors

1 Faculty of Science, Department of Physics, Malayer University.

2 Department of Physics, Malayer University

3 Department of Agronomy and Plant Breeding, Faculty of Agriculture, Malayer University.

Abstract

In the present research, ZnSe nanoparticles were synthesized by aqueous method at pHs of 8, 10.2, 11.2 and 12.2 and were grown by microwave irradiation at the times of 0 and 6 minutes. In the synthesis process, Se and Zn ions sources were added to each other at the presence of thioglycolic acid as capping agent . Antibacterial properties of these nanoparticles have been carried out by using disc diffusion method (in solid Muller-Hinton-Agar culture) against the Escherichia coli and Pseudomonas aeruginosa gram-negative bacteria in the loading volume of 140 µL of nanoparticles. Generally, results showed that by increasing the radiation time from 0 to 6 min, bacterial growth inhibition zone increased for Pseudomonas aeruginosa bacteria in compare with Escherichia coli bacteria; the highest antibacterial activity is devoted to the cases of pH=10.2 and 11.2, and these samples can be introduced as new agents in the field of nano-biotechnology applications.

Keywords

Main Subjects


  1. Sriram, M. I., Kalishwaralal, K., Barathmanikanth, S., Gurunathani, S., "Size-Based Cytotoxicity of Silver Nanoparticles in Bovine Retinal Endothelial Cells", Nanoscience Methods, 1, No. 1, pp. 56-77, (2012).
  2. Selvam, S., Gandhi, R. R., Suresh, J., Gowri, S., Ravikumar, S., Sundrarajan, M., "Antibacterial Effect of Novel Synthesized Sulfated β-Cyclodextrin Crosslinked Cotton Fabric and its Improved Antibacterial Activities with ZnO, TiO2 and Ag Nanoparticles Coating", International Journal of Pharmaceutics, 434, No. 1-2, pp. 366-374, (2012).
  3. Ghaznavi-Rad, E., Shamsudin, M. N., Sekawi, Z., Khoon, L. Y., Aziz, M. N., Hamat, R. A., Neela, V., "Predominance and Emergence of Clones of Hospital-Acquired Methicillin-Resistant Staphylococcus aureus in Malaysia", Journal of Clinical Microbiology, 48, No. 3, pp. 867-872, (2010).
  4. احمدیان، کبری. ، "اثر pH و زمان تابش بر خواص نوری و ساختاری نانوبلورهای ZnSe سنتزشده به‌روش تابش مایکروویو"، پایان‌نامه­ی کارشناسی ارشد فیزیک حالت جامد، دانشکده­ی علوم پایه، دانشگاه ملایر، (1396).
  5. Souri, D., Sarfehjou, M., Khezripour, A. R., "The effect of ambient Temperature on the Optical Properties and Crystalline Quality of ZnSe and ZnSe: Cu NCs Grown by Rapid Microwave Irradiation", Journal of Materials Science: Materials in Electronics, 29, pp. 3411–3422, (2018).
  6. Hopfield, J. J., "Theory of the Contribution of Excitons to the Complex Dielectric Constant of Crystals", Physical Review, 112, No. 5, pp.1555-1561, (1958).
  7. Jiang, X., Xie, Y., Lu, J., Zhu, L., He, W., Qian, Y., "Simultaneous in Situ Formation of ZnS Nanowires in a Liquid Crystal Template by γ-irradiation", Chemistry of Materials, 13, No. 4, pp. 1213-1218, (2001).
  8. Driscoll, A. J., Bhat, N., Karron, R. A., O’Brien, K. L., Murdoch, D. R., "Disk Diffusion Bioassays for the Detection of Antibiotic Activity in Body Fluids: Applications for the Pneumonia Etiology Research for Child Health Project", Clinical Infectious Diseases, 54, pp.159-164, (2012).
  9. Kwamboka, B., Omwoyo, W., Oyaro, N., "Synthesis, Characterization and Antimicrobial Activity of ZnS Nanoparticles", Indian Journal of Nanoscience, 4, No. 2, pp. 1-6, (2016).
  10. Jafari, A., Ghane, M., Arastoo, S., "Synergistic Antibacterial Effects of Nano Zinc Oxide Combined with Silver Nanocrystals", African Journal of Microbiology Research, 5, pp. 5465-5473, (2011).
  11. Edwards, A. J., Klug, H. P., Alexander, L. E., "X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials", Wiley-Interscience, New York, 2nd Edn., 966-983, (1975).‏
  12. Singh, A. K. Viswanath, V. Janu, V. C., "Synthesis, Effect of Capping Agents, Structural, Optical and Photoluminescence Properties of ZnO Nanoparticles", Journal of Luminescence, 129, No. 8, pp.874-878, (2009).
  13. Gilbert, R. J., "Bacillus Cereus", In Riemann and F. L., Bryan (Eds), "Food-borne Infections and Intoxications", 2nd Ed, Academic Press, New York, pp. 495–514. (1979).
  14. Griffiths, M. W., Schraft, H., "Bacillus Cereus Food Poisoning", In Cliver, D.O., Riemann, H.P. (Eds.), "Foodborne Diseases", 2nd Ed, Academic Press, New York, NY., pp. 261–270, (2002).
  15. Schraft, H., Griffiths, M.W., "Bacillus Cereus Gastroenteritis", In Riemann and D.O. Cliver (Eds). "Foodborne Infections and Intoxications", 3rd Ed, Academic Press, New York, NY., pp. 561–582. (2006).
  16. Wijnands, L. M., Dufrenne, J. B., Zwietering, M. H., van Leusden, F. M., "Spores from Mesophilic Bacillus Cereus Strains Germinate Better and Grow Faster in Simulated Gastro-Intestinal Conditions than Spores from Psychrotrophic Strains", International Journal of Food Microbiology 112, pp.120–128, (2006).
CAPTCHA Image