The Desired Strength of Al-Si-Cu Alloy Closed Cell Foam and Its Comparing with the Strength of Ship’s Fresh Bone

Document Type : Original Articles

Authors

Materials and Metallurgical Engineering Amirkabir university,

Abstract

The present study aims to create an artificial bone from metal foam with a strength close to that of natural bone. The metal foam was made of A356 American alloy and a specific amount of Copper. As the aluminum alloy foam undergoes aging, the desired compressive strength and toughness can be achieved. Four aging cycles were conducted with durations of 2, 7, 15, and 24 hours and all under the temperature of 165 Celsius degrees. The results from the electron microscope analysis revealed that Copper particles, which were dissolved in the thin walls of solid bubbles in the Al-Si-Cu foam, were able to create the metastable and very small phases of and by decomposing the Copper-rich GP zones. The number of these metastable phases grows during the aging process and this causes the strength of the artificial bone to increase. To validate the quantities of compressive strength and also to compare them with those of a fresh shin bone, the artificial bone samples were obtained from the aging cycles. These samples, along with a sheep's fresh entire shin bone, were measured and compared in terms of resistance to compressive loading. The results showed that the strength and toughness of the sample which underwent a 15-hour aging cycle (165 Celsius degrees) were 30 MPa and 13.60 MJ/m3, respectively –close to those of a natural bone that equate to 13 MPa and 12.00 MJ/m3. The results also revealed that the sample’s strength declines again as the aging process is further prolonged.

Keywords

Main Subjects


  1. Safadi, F. F., Barbe, M., Abdelmagid, S., Rico, M., Aswad, R. A., Litvin, J., et al., "Bone Structure, Development and Bone Biology", In: Khurana JS, Bone Pathology. 2 ed. Philadelphia, U.S.A: Humana Press, Pp. 1-50, (2009).
  2. Marolt, D., Knezevic, M., Novakovic, G.V., "Bone Tissue Engineering with Human Stem Cells", Stem Cell Res Ther, Vol. 1(2), Pp. 1-10, (2010).
  3. Kini, U., Nandeesh, B. N., "Physiology of Bone Formation, Remodeling and Metabolism", In: Fogelman I, Gnanasegaran, Gopinath, van der Wall, Hans (Eds.), editor. Radionuclide and Hybrid Bone Imaging. India, Chap. (2), Pp. 29-57, (2012).
  4. Kheirallah, M., Almeshaly, H., "Bone Graft Substitutes for Bone Defect Regeneration", A collective review. International Journal of Dentistry and Oral Science (IJDOS), Vol. 03(5) Pp. 247-57, (2016).
  5. Julia Kenkre, J. B., "The Bone Remodelling Cyc", Ann Clin Biochem, Vol. 55(3), Pp. 308-27, (2017).
  6. Alobeedallah, H., Ellis, J. L., Rohanizadeh, R., Coster, H. G. L., Dehghani, F., "Preparation of Nanostructured Hydroxyapatite in Organic Solvents for Clinical Applications", Trends in Biomaterials and Artificial Organs, Vol. 25(1), Pp. 12-9, (2011).
  7. Armas, L. A. G., Lappe, J. M., Heaney, R. P., "Calcium, Bone Strength and Fractures", In: Orwoll ES, Bilezikian JP, Vanderschueren D, editors. Osteoporosis in men 2ed: Elsevier Inc, Pp. 235-41, (2010).
  8. Warden, S. J., Davis, I. S., Fredericson, M., "Management and Prevention of Bone Stress Injuries in Long-Distance Runners", J Orthop Sports Phys Ther, Vol. 44(10), Pp. 749-65, (2014).
  9. Oryan, A., Monazzah, S., Bigham-Sadegh, A., "Bone Injury and Fracture Healing Biology", Biomedical Environ Sci, Vol. 28(1), Pp. 57-71, (2015).
  10. Guden M, Celik, E., Cetiner, S., Aydin, A., Metals Foams for Biomedical Applications: Processing and Mechanical Properties. Advances in Experimental Medicine and Biology. 5532004. Pp. 257-66.
  11. Matsushita, T., Fujibayashi, S., Kokubo, T., "Titanium Foam for Bone Tissue Engineering", In: Wen C, editor. Metallic Foam Bone: Processing, Modification and Characterization and Properties: Woodhead Publishing, Vol. 17, Pp. 10-130, (2017).
  12. Madgule, M., Sreenivasa, C. G., Shivakumar, K.M., "A Review on Production of Aluminium Metal Foams", International Conference on Advances Manufacturing, Materials and Energy Engineering; 2-4 March; Karnataka, India: IOP Publishing Ltd, Vol. 376, Pp. 1-12, (2018).
  13. Shahsavan, M., Mirbagheri, S. M. H., "Production of Open Cell Copper Foam and Assessment of Foam Substructure", Journal of New Materials, Vol. 8(31), Pp. 1-16, (2018).
  14. Banhart, J., "Manufacture, Characterisation and Application of Cellular Metals and Metal Foams", Progress in Materials Science,Vol. 46, Pp. 559-632, (2001).
  15. Ashby, M., Evans, T., Fleck, N., Hutchinson, J. W., Wadley, H. N. G., Gibson, L. J., "Metal Foams: A Design Guide", Amsterdam, The Netherlands: Elsevier; (2000).
  16. Koloushani, M., Hedayati, R., Sadighi, M., Mohammadi-Aghdam, M., "CT-Based Micro-Mechanical Approach to Predict Response of Closed-Cell Porous Biomaterials to Low-Velocity Impact", Journal of Imaging,Vol. 4(3), Pp. 49-64 , (2018).
  17. Mirzaali, M. J., Mussi, V., Vena, P., FlaviaLibonati, Vergani, L., "Strano M. Mimicking the Loading Adaptation of Bone Microstructure with Aluminum Foams", Materials & Design, Vol. 126, Pp. 207-18, (2017).
  18. Mirzaali, M. J., Libonati, F., Vena, P., Mussi, V., Vergani, L. M., Strano. Investigation of the Effect of Internal Pores Distribution on the Elastic Properties of Closed-Cell Aluminum Foam: A Comparison with Cancellous Bone. Procedia Structural Integrity, Vol. 2, Pp. 1285-94, (2016).
  19. Gibson, L. J., Ashby, M. F., "Cellular Solids: Structure and Properties", 2 ed. Cambridge, UK: Cambridge University Press, (1997).
  20. Mirbagheri, S. M. H., Vali, H., Soltani, H., "Heat Treatment of Closed-Cell A356+ 4 wt.% cu+ 2 wt.% Ca Foam and its Effect on the Foam Mechanical Behavior", Journal of Materials Engineering and Performance, Vol. 26(1), Pp. 14-27, (2016).
  21. ISO 13314:2011. Mechanical Testing of Metals — Ductility Testing — Compression Test for Porous and Cellular Metals, (2011).
  22. Kelly, A., Nicholson RB., Precipitation Hardening, Progress in Materials Science.: Pergamon Press, Chap:4, Pp. 171-203, (1963).
  23. Zhu, X-H., Lin, Y. C., Wu, Q., Jiang, Y-Q., "Effects of Aging on Precipitation Behavior and Mechanical Properties of a Tensile Deformed Al–Cu Dlloy", Journal of Alloys and Compounds, Vol. 843, Pp. 23-39, (2020).
  24. Gazizov, M., Kaibyshev, R., "Effect of Pre-Straining on the Aging Behavior and Mechanical Properties of an Al–Cu–Mg–Ag Alloy", Materials Science and Engineering: A, Vol. 625, Pp. 119-30, (2015).
  25. Chung, T-F., Yang, Y-L., Hsiao, C-N., Li, W-C., Huang, B-M., Tsao, C-S., et al., "Morphological Evolution of GP Zones and Nanometer-Sized Precipitates in the AA2050 Aluminium Alloy", International Journal of Lightweight Materials and Manufacture,Vol. 1(3), Pp. 142-56, (2018).
  26. Wang, S. C., Starink, M. J., Gao, N., "Precipitation Hardening in Al–Cu–Mg Alloys Revisited", Scripta Materialia, Vol. 54(2), Pp. 287-91, (2006).
  27. نیری، م.، خواجه علی، م.، میرباقری سمح.، «بررسی رفتار فشار شبه‌استاتیکی قوطی‌های پرشده با کامپوزیت فومی Al-Si-SiC-xFe»، مهندسی متالورژی و مواد، سال 27، شمارۀ 2 ، صص. 24- 9، (1395).
  28. میرباقری، سمح.، والی، ح.، سلطانی، ح.، «خواص مکانیکی فوم فلزی A356 غنی‌شده با مس و اثر عملیات پیرسازی بر آن»، دورۀ 17، شمارۀ 53، بهار ، صص. 55 -49، (1393).
  29. Salehi, M., Mirbagheri, S. M. H., Ramiani, A. J., "Deformation Behavior and Crashworthiness of Functionally Graded Metallic Foam-Filled Tubes under Drop-Weight Impact Testing", Metallurgical and Materials Transactions A, Vol. 51(10), Pp. 5120-38, (2020).
CAPTCHA Image