The Effect of Ni Addition on the Microstructure and Glass Forming Ability of Fe-Mo-P-C-B Bulk Amorphous Alloy

Document Type : Original Articles

Authors

yazd university

Abstract

In this work, the effect of Ni addition on the glass forming ability (GFA) of FeMoPCB composite alloy was investigated and the optimal amount of Ni to improve GFA was determined. So, the thermal stability of this alloy with the various percent of nickel was investigated by not only experimental methods including; differential scanning calorimetry, X-ray diffraction, optical microscope and transmission electron microscopy but also computational methods such as α، β، γ and etc. The results of XRD test, TEM showed that in the presence of 10 at.% nickel , the glass-forming ability of this alloy increased, while in the presence of lower or higher percent nickel, different crystalline phases were detected. The presence of crystalline phases was also investigated by microhardness test. Finally, it was found that the results of the computational methods regardless of the experimental results don’t have enough accurate .

Keywords


  1. Long, Z., Shao, Y., Xie, G., Zhang, P., Shen, B., Inoue, A., "Enhanced soft-magnetic and corrosion properties of Fe-based bulk glassy alloys with improved plasticity through the addition of Cr", Journal of Alloys and Compounds, Vol. 462, pp. 52–59, (2008).
  2. Qiao, D.C., Green, B., Morrison, M., Liaw, P.K., "Electrochemical behavior of a Fe48Cr15Mo14Er2C15B6 bulk metallic glass", Review Advance on Material Science, Vol. 18, pp. 149–153, (2008).
  3. Zhang, T., Liu, F., Pang, S., Li, R., "Ductile Fe-based bulk metallic glass with good soft-magnetic properties", Materials transactions, Vol. 48, pp. 1157–1160, (2007).
  4. م.حداد, ز.ج., "بررسی اکسایش سطحی نوار بی شکل Co67Cr7Fe4Si8B14 در طول فرایند بلورینگی", مهندسی متالورژی و مواد, Vol. 24, (1392).
  5. ع.جزایری, ب.ب.ح.ا., "بررسی مکانیزم تبلور و تاثیر عملیات حرارتی بر ساختار و خواص مغناطیسی نوارهای آمورف Co68.15Fe4.35Si12.5B15", مهندسی مکانیک, شماره،40.،(1389).
  6. Guo, S.F., Liu, L., Li, N., Li, Y., "Fe-based bulk metallic glass matrix composite with large plasticity", Scripta Materialia, Vol. 62, pp. 329–332, (2010).
  7. Lesz, S., Nowosielski, R., Materials, F., Technologies, P., "Formation and physical properties of Fe-based bulk metallic glasses with Ni addition", Journal of Achievements in Materials and Manufacturing Engineering, Vol. 31, pp. 35–40, (2008).
  8. Inoue, A., Kong, F.L., Man, Q.K., Shen, B.L., Li, R.W., Al-marzouki, F., "Development and applications of Fe- and Co-based bulk glassy alloys and their prospects", Journal of Alloys and Compounds, Vol. 615, pp. 2–8, (2014).
  9. Guo, S.F., Li, N., Zhang, C., Liu, L., "Enhancement of plasticity of Fe-based bulk metallic glass by Ni substitution for Fe", Journal of Alloys and Compounds, Vol. 504, pp. S78–S81, (2010).
  10. Su, C., Chen, Y., Yu, P., Song, M., Chen, W., Guo, S.F., "Linking the thermal characteristics and mechanical properties of Fe-based bulk metallic glasses", Journal of Alloys and Compounds, Vol. 663, pp. 867–871, (2016).
  11. Seifoddini, A., Stoica, M., Nili-Ahmadabadi, M., Heshmati-Manesh, S., Kühn, U., Eckert, J., "New (Fe0.9Ni0.1)77Mo5P9C7.5B1.5 glassy alloys with enhanced glass-forming ability and large compressive strain", Materials Science and Engineering: A, Vol. 560, pp. 575–582, (2013).
  12. Dai, L.H., Bai, Y.L., "Basic mechanical behaviors and mechanics of shear banding in BMGs", International Journal of Impact Engineering, Vol. 35, pp. 704–716, (2008).
  13. Lee, C.J., Huang, J.C., Nieh, T.G., "Sample size effect and microcompression of Mg 65 Cu 25 Gd 10 metallic glass", Applied Physics Letters, Vol. 91, pp. 161913, 2007.
  14. Chen, Q.J., Fan, H.B., Ye, L., Ringer, S., Sun, J. F., Shen, J., McCartney, D.G., "Enhanced glass forming ability of Fe–Co–Zr–Mo–W–B alloys with Ni addition", Materials Science and Engineering: A, Vol. 402, pp. 188–192, (2005).
  15. Guo, S.F., Liu, L., Li, N., Li, Y., "Fe-based bulk metallic glass matrix composite with large plasticity", Scripta Materialia, Vol. 62, pp. 329–332, 2010.
  16. Park, J. M., Wang, G., Li, R., Mattern, N., Eckert, J., Kim, D.H., "Enhancement of plastic deformability in Fe–Ni–Nb–B bulk glassy alloys by controlling the Ni-to-Fe concentration ratio", Applied Physics Letters, Vol. 96, pp. 31905, (2010).
  17. Eckert, J., Das, J., Kim, K.B., Baier, F., Tang, M.B., Wang, W.H., Zhang, Z.F., "High strength ductile Cu-base metallic glass", Intermetallics, Vol. 14, pp. 876–881, (2006).
  18. Stoica, M., Eckert, J., Roth, S., Zhang, Z.F., Schultz, L., Wang, W.H., "Mechanical behavior of Fe 65.5 Cr 4 Mo 4 Ga 4 P 12 C 5 B 5.5 bulk metallic glass", Intermetallics, Vol. 13, pp. 764–769, (2005).
  19. Gu, X.J., McDermott, A.G., Poon, S.J., Shiflet, G.J., "Critical Poisson’s ratio for plasticity in Fe–Mo–C–B–Ln bulk amorphous steel", Applied Physics Letters, Vol. 88, pp. 211905, (2006).
  20. Yao, K.F., Zhang, C.Q., "Fe-based bulk metallic glass with high plasticity", Applied Physics Letters, Vol. 90, pp. 61901, (2007).
  21. Yang, W., Liu, H., Zhao, Y., Inoue, A., Jiang, K., Huo, J., Ling, H., Li, Q., et al., "Mechanical properties and structural features of novel Fe-based bulk metallic glasses with unprecedented plasticity", Scientific reports, Vol. 4, pp. 6233, (2014).
  22. C. Suryanarayana and A. Inoue, Bulk Metallic Glasses. CRC Press, )2011(.
  23. D. V. Louzguine-Luzgin and A. Inoue, Bulk Metallic Glasses. Formation, Structure, Properties, and Applications., 1st ed., Elsevier B.V., vol. 21., )2013(.
  24. Askari-Paykani, M., Nili-Ahmadabadi, M., Seiffodini, A., "On the subsurface deformation of two different Fe-based bulk metallic glasses indented by Vickers micro hardness", Intermetallics, Vol. 46, pp. 118–125, (2014).
  25. Seiffodini, A., Zaremehrjardi, S., "Effects of heat treatment on crystallization behavior, microstructure and the resulting microhardness of a (Fe 0.9 Ni 0.1 ) 77 Mo 5 P 9 C 7.5 B 1.5 bulk metallic glass composite", Journal of Non-Crystalline Solids, Vol. 432, pp. 313–318, (2016).
  26. Mondal, K., Murty, B.S., "On the parameters to assess the glass forming ability of liquids", Journal of non-crystalline solids, Vol. 351, pp. 1366–1371, (2005).
  27. Dong, B., Zhou, S., Li, D., Lu, C., Feng, G.U.O., Ni, X., Lu, Z., "A new criterion for predicting glass forming ability of bulk metallic glasses and some critical discussions", Journal of Progress in Natural Science: Materials International, Vol. 21, pp. 164–172, (2011).
  28. Yuan, Z.-Z., Bao, S.-L., Lu, Y., Zhang, D.-P., Yao, L., "A new criterion for evaluating the glass-forming ability of bulk glass forming alloys", Journal of Alloys and Compounds, Vol. 459, pp. 251–260, (2008).
  29. Inoue, A., "Stabilization of Metallic Supercooled Liquid and Bulk Amorphous Alloy", Acta materialia, Vol. 48, pp. 279–306, (2000).
  30. Haratian, S., Haddad-Sabzevar, M., "Thermal stability and non-isothermal crystallization kinetics of Ti41.5Cu42.5Ni7.5Zr2.5Hf5Si1 bulk metallic glass", Journal of Non-Crystalline Solids, Vol. 429, pp. 164–170, (2015).
  31. Hrubý, A., "Evaluation of glass-forming tendency by means of DTA", Czechoslovak Journal of Physics, Vol. 22, pp. 1187–1193, (1972).
  32. Kim, J.-H., Park, J.S., Lim, H.K., Kim, W.T., Kim, D.H., "Heating and cooling rate dependence of the parameters representing the glass forming ability in bulk metallic glasses", Journal of non-crystalline solids, Vol. 351, pp. 1433–1440, (2005).
CAPTCHA Image