Thermodynamics and Kinetics of Immersion Behavior of IC221M Alloy as a Separator in Molten Carbonate Fuel Cell

Document Type : Original Articles

Authors

1 IUST

2 Torento

3 Iran university of science and technology

Abstract

The thermodynamic and kinetic behavior of nickel aluminide IC221M alloy in molten eutectic of lithium/sodium carbonate was investigated. The nickel aluminide IC221M alloy was produced by vacuum arc re-melting (VAR) method. Surface layer products formed after immersion in molten carbonate at 600, 650 and 700 oC were examined by SEM and XRD. The results along with weight difference calculations showed that IC221M alloy doesn’t have a good resistance at 650 and 700 oC . It was evidenced that the destruction of the alloy is a diffusion-controlled process. The activation energy of the process was calculated to be 423 kJ/mol and the process kinetics were controlled by aluminum diffusion in γ´ phase.

Keywords


1. Hwang E.R., Kang S.G., "A study of a corrosion-resistant coating for a separator for a molten carbonate fuel cell", Journal of Power Sources, Vol. 76, pp. 48-53, (1998).
2. Kawabata Y., Fujimoto N., Yamamoto M., Nagoya T., Nishida M., "Long-term corrosion resistance of Al–Ni-plated material and Al-plated material in molten carbonate environment", Journal of Power Sources, Vol. 86, pp. 324-328, (2000).
3. Lindbergh G., Zhu B., "Corrosion behaviour of high aluminium steels in molten carbonate in an anode gas environment", Electrochimica Acta, Vol. 46, pp. 1131-1140, (2001).
4. Zhu B., Lindbergh G., "Corrosion behaviour of high-chromium ferritic steels in molten carbonate in cathode environment", Electrochimica Acta, Vol. 46, pp. 2593-2604, (2001).
5. Durante G., Vegni S., Capobianco P., Golgovici F., "High temperature corrosion of metallic materials in molten carbonate fuel cells environment”, Journal of Power Sources, Vol. 152, pp. 204-209, (2005).
6. Randström S., Lagergren C., Capobianco P., "Corrosion of anode current collectors in molten carbonate fuel cells", Journal of Power Sources, Vol. 160, pp. 782-788, (2006).
7. Agüero A., Garcı́a de Blas F.J., Garcı́a M.C., Muelas R., Roman A., "Thermal spray coatings for molten carbonate fuel cells separator plates", Surface and Coatings Technology, Vol. 146–147, pp. 578-585, (2001).
8. Perez F.J., Duday D., Hierro M.P., Gomez C., Agüero A., Garcı́a M.C., "Hot corrosion study of coated separator plates of molten carbonate fuel cells by slurry aluminides", Surface and Coatings Technology, Vol. 161, pp. 293-301, (2002).
9. Fujimoto N., Yamamoto M., Nagoya T., "Estimation of the lifetime of Al/Ni-plated material for wet-seal area in molten carbonate fuel cells", Journal of Power Sources, Vol. 71, pp. 231-238, (1998).
10. Huijsmans J.P.P., Kraaij G.J., Makkus R.C., Rietveld G., Sitters E. F., Reijers H.T.J., "An analysis of endurance issues for MCFC", Journal of Power Sources, Vol. 86, pp. 117-121, (2000).
11. ASM handbook Vol. 3: alloy phase diagrams: material information society, (1992).
12. Specialty Handbook: Nickel, Cobalt, and Their Alloys. Ohio, USA: ASM international, (2000).
13. Lee D., Santella M.L., Anderson I.M., Pharr G.M., "Thermal aging effects on the microstructure and short-term oxidation behavior of a cast Ni3Al alloy", Intermetallics, Vol. 13, pp. 187-196, (2005).
14. Lee D., Santella M., Anderson I., Pharr G., "Long-term oxidation of an as-cast Ni3Al alloy at 900C and 1100C", Metallurgical and Materials Transactions A, Vol. 36, pp. 1855-1869, (2005).
15. Lee D., Santella M.L., "Thermal aging effects on the mechanical properties of as-cast Ni3Al-based alloy", Materials Science and Engineering A, Vol. 428, pp. 196-204, (2006).
16. Yu S., Wang C.Y., Yu T., Cai J., "Self-diffusion in the intermetallic compounds NiAl and Ni3Al: An embedded atom method study", Physica B: Condensed Matter, Vol. 396, pp. 138-144, (2007).
17. Ikeda T., Almazouzi A., Numakura H., Koiwa M., Sprengel W., Nakajima H., "Single-phase interdiffusion in Ni3Al", Acta Materialia, Vol. 46, pp. 5369-5376, (1998).
18. Divinski S., Frank S., Södervall U., Herzig C., "Solute diffusion of Al-substituting elements in Ni3Al and the diffusion mechanism of the minority component", Acta materialia, Vol. 46, pp. 4369-4380, (1998).
19. Chen S.J., Huang H.L., "Diffusion activation energies in face-centered cubic metals using the Morse potential function", Chinese Journal of Physics, Vol. 19, pp. 106-112, (1981).
20. Hargather C.Z., Shang S.L., Liu Z.K., Du Y., "A first-principles study of self-diffusion coefficients of FCC Ni", Computational Materials Science, Vol. 86, pp. 17-23, (2014).
CAPTCHA Image