Influence of the solution heat treatment on the behavior of γ′ precipitates and microhardness of dendrite core and inter-dendritic regions of cast superalloy GTD-111

Document Type : Original Articles

Authors

Department of Mining and Metallurgical Engineering, Yazd University, Yazd, Iran.

Abstract

In this research, the process of dissolution of γ' precipitates in GTD-111 casting superalloy was investigated. For this purpose, the dissolution operation was carried out at a temperature of 1100°C to 1230°C in 4 different times on samples prepared from the ingot with the aim of determining the effect of temperature and time on the behavior of the dissolution of the γ′ precipitates in the dendrite core and inter-dendritic regions. The microstructure of the samples was studied using the SEM and FESEM electron microscopes. Quantitative studies of microscopic images showed that complete dissolution of the initial γ′ precipitates occurred at 1230°C/40min for dendrite core regions and 1180°C/120min in the inter-dendritic regions. Investigating the micro-hardness of samples in the dendrite core and inter-dendritic regions of the specimens showed that the microhardness in these regions does not change with increasing temperature. Also the highest and lowest hardness was obtained at 1200 and 1120 in both regions respectively.

Keywords


  1. Ross, E. W., Sims, C. T., "Nickel Base Superalloys, in Superalloy II", John Wiley & Sons Inc., New York, pp. 97-131, (1987).
  2. Zhang, F., et al., "Effect of heat treatment on the microstructural evolution of a nickel-based superalloy additive-manufactured by laser powder bed fusion", Acta Materialia, Vol. 152, pp. 200-214, (2018).
  3. Reed, R. C., "The Superalloys Fundamentals and Applications", Cambridge University Press, Cambridge, pp. 14-28, (2006).
  4. Paraschiv, A., Matache, G., and Puscasu, C., "The effect of heat treatment on the homogenization of CMSX-4 Single-Crystal Ni-Based Superalloy", Transportation Research Procedia, Vol. 29, pp. 303-311, (2018).
  5. Wood, M. I., "Gas turbine hot section components: The challenge of residual life assessment, Proceedings of the Institution of Mechanical Engineers", Part A: Journal of Power and Energy, Vol. 214, pp. 193–201, (2000).
  6. Sajjadi, S. A., Zebarjad, S. M., Guthrie, R. I. L., Isac, M., "Microstructure evolution of high-performance Ni-base superalloy GTD-111 with heat treatment parameters", Materials Processing Technology, Vol. 175, pp. 376-381, (2006).
  7. Fan, X., Guo, Z., Wang, X., Yang, J. and Zou, J., "Morphology evolution of γ′ precipitates in a powder metallurgy Ni-base superalloy", Materials Characterization, Vol. 139, pp.382-389, (2018)

8.    سجادی، س. ع.، باباخانی، ا.، یوسفی ثانی، م.، «بررسی ریزساختار پره‌های مستعمل ردیف اول توربین گازی و تعیین سیکلعملیات حرارتی مناسب برای بازیابی ساختار اولیه آن‌ها»، نشریه مهندسی متالورژی و مواد، سال 21، شماره 1، صفحات 1-10، (1388).

9.    Daleo, J. A., Wilson, J. R., "GTD111 alloy material study", Journal of Engineering for Gas Turbines and Power, Vol. 120, pp. 375–382, (1998).

10.  Kim, M. T., Chang, S. Y., Won, J. B., "Effect of HIP process on the micro-structural evolution of a nickel-based superalloy", Materials Science and Engineering: A, pp. 126-134, (2006).

11. Balikci, E., Raman, A., Mirshams, R.A., "Influence of various heat treatments on the microstructure of polycrystalline IN738LC", Metallurgical and Materials Transactions A, Vol. 28A, pp. 1993–2003, (1997).

  1. Monajati, H., Jahazi, M., Bahrami, R., Yue, S., "The influence of heat treatment conditions on γ′ characteristics in Udimet 720", Metallurgical and Materials Transactions A, Vol. 373, pp. 286-293, (2004).
  2. Wang, X., Zhou, Y., Zhao, Z., Zhang, Z., "Effects of Solutioning on the Dissolution and Coarsening of γ′ Precipitates in a Nickel-Based Superalloy", Journal of Materials Engineering and Performance, Vol. 24(4), pp.1492-1504. (2015).
  3. Trexler, M. D., Church, B. C., Sanders, T. H., "Determination of the Ni3(Ti, Al) dissolution boundary in a directionally solidified superalloy", Scripta materialia, Vol. 55, pp. 561–564, (2006).
  4. Heilmaier, M., Leetz, U., Reppich, B., "Order strengthening in the cast nickel-based superalloy IN100 at room temperature", Materials Science and Engineering A, Vol. 319-321, pp. 375-378, (2001).
  5. Hosseini, S. S., Nategh, S., Ekrami, A. A., "Microstructural evolution in damaged IN738LC alloy during various steps of rejuvenation heat treatments", Journal of Alloys and Compounds, Vol. 512, pp. 340–350, (2012).

17. بهروزقائمی، س.، عبداله‌زاده، ا.، جعفریان، ح.، «اثر سرعت سردکردن بر اندازه، توزیع و مورفولوژی رسوبات ′γ در یک سوپرآلیاژ پایه نیکل»، یازدهمین کنگره سالانه انجمن مهندسین متالورژی ایران، (1386).

  1. Miura, N., Kondo, Y., Kubushiro, K., Takahashi S., "Change in microstructure at grain boundries with creep deformation polycrystalline nickel-based superalloy IN100 at 1273˚K", Advanced Materials Research, Vol. 278, pp. 132-137, (2011).
  2. Behrouzghaemi, S., Mitchell, R. J., "Morphological changes of γ′ precipitates in superalloy IN738LC at various cooling rates", Materials Science and Engineering: A, Vol. 498, pp. 266–271, (2008).
  3. Safari, J., Nategh, S., "On the heat treatment of Rene80 nickel-base superalloy", Journal of Materials Processing Technology, Vol. 176, pp. 240-250, (2006).

21. رحیمی، ا.، میردامادی، ش.، رضوی، ح.، عباسی م.، «تأثیر عملیات حرارتی بر ریزساختار سوپرآلیاژ پایه نیکل ریختگی IN100»، نشریه مهندسی متالورژی و مواد، سال 28، شماره 1، صفحه 1-12، (1395).

22.   سلیمانی، س.، عبداله‌زاده، ا.، بهروزقائمی، س.، متاله، آ.، صمدی، ا.، «بررسی فرایند انحلال سوپرآلیاژ U500 و میزان حضور رسوبات نانومتری گاماپرایم پس ‌از انجام انحلال»، دهمین کنگره سالانه انجمن متالورژی ایران، (1385).

 

 

CAPTCHA Image