Effect of Milling and Heat Treatment on the Microstructure of 38wt%TiO2-36wt%NiO-26wt%C and the Influence of Produced Nanostructured Powder Mixtures on the Hydrogen Desorption from MgH2

Document Type : Original Articles

Authors

1 university of Tehran

2 Hamedan university of technology

Abstract

In this study 38wt%TiO2-36wt%NiO-26wt%C powder mixture was ball milled for 5, 10, and 20 hours and then heat treated at 300, 600, 900 and 1200 oC for one hour. Results showed that chemical reaction between initial components of powder did not occur during milling. Increasing milling time from 5 to 20h and heat treatment temperature from 300 to 900oC led to reduction of NiO to Ni by graphite and transformation of anatase to rutile. Heat treatment at 1200oC led to appearance of NiTiO3 phase. In the next step 10 wt% of 20h milled samples which heat treated at various temperatures were added to MgH2 as catalyst and then ball milled for 20 hours. The effect of this process on the hydrogen desorption from MgH2 was investigated. Results showed that adding catalyst produced at 1200oC to MgH2 and ball milling for 20 hours led to 6.45wt% hydrogen desorption and 170oC decrease in desorption temperature. The reason of this improvement in hydrogen desorption properties was related to the catalytic effect of NiTiO3 phase.  
 

Keywords


1. Varin R.A., Czujko T., Wronski Z.S., "Nanomaterials for Solid State Hydrogen Storage", 1st ed., Springer Science, New York, USA, (2009).
2. Yildiz B., Kazimi M.S., "Efficiency of hydrogen production systems using alternative nuclear energy technologies", International Journal of Hydrogen Energy, Vol. 31, pp. 77–92, (2006).
3. Turner J.A., Williams M.C., Rajeshwar K., "Hydrogen economy based on renewable energy sources", Electrochemical Society Interface, Vol.13, pp. 24-30, (2004).
4. Schlapbach L., Züttel A., "Hydrogen-storage materials for mobile applications", Nature, Vol. 414, pp. 353-358, (2001).
5. Walker G., "Solid-state Hydrogen Storage Materials and Chemistry", 1st ed., Wood head Publishing Limited, Cambridge, England, (2008).
6. Berube V., Dresselhaus M.S., Chen G., "Nanostructuring impact on the enthalpy of formation of metal hydrides", Materials Issues in Hydrogen Economy, Richmond, Virginia, USA, pp.92-102, 12-15 November, (2007).
7. David E., "An overview of advanced materials for hydrogen storage", Journal of Materials Processing Technology, Vol. 162-163, pp. 169-177, (2005).
8. Zuttel A., " Hydrogen storage and distribution systems", Mitigation and Adaption Strategies for Global Change, Vol. 12, pp. 343-365, (2007).
9. Barkhordarian G., Klassen T., Bormann R., "Catalytic mechanism of transition metal compounds on Mg Hydrogen sorption reaction", Journal of Physical Chemistry, Vol. 110, pp. 11020-11024, (2006).
10. Bockris J.O.M., "Will lack of energy lead to the demise of high-technology countries in this century?", International Journal of Hydrogen Energy, Vol. 32, pp. 153-158, (2007).
11. مرادی غیاث آبادی س.، "احیای کربوترمی و مکانیکی-حرارتی Fe2O3 و TiO2 به منظور سنتز نانوکامپوزیت Fe-TiC"، پایان نامه کارشناسی ارشد، دانشکده مهندسی متالورژی و مواد، دانشگاه تهران، (1387).
12. MoradiGhiasabadi S., Raygan Sh., "Insitu production of Fe/TiO2/C powder", Journal of Materials Engineering and Performance, pp. 1-8, (2012).
13. Cullity B.D., "Elements of X-ray Diffraction", 2nd edition, New York, (1978).
14. Setoudeh N., Saidi A. Welham N.J., "Carbothermic reduction of anatase and rutile", Journal of Alloys and Compounds, Vol. 390, pp. 138-143, (2005).
15. Klissurski D., Mancheva M., Iordanova R., Tyuliev G., Kunev B., "Mehcanochemical synthesis of nanocrystalline nickel molybdates", Journal of Alloys and Compounds, Vol. 422, pp.53-57, (2006).
16. Yang H., McCormik P.G., "Mechanically activated reduction of nickel oxide with graphite", Metallurgical and Materials Transactions B, Vol. 29, pp. 449-455, (1998).
17. Sohn J.R. Han J.S., "Physicochemical and catalytic properties of NiO-TiO2 modified with WO3 for ethylene dimerization", Applied Catalysis A, Vol. 39, pp. 168-176, (2006).
18. پورعبدلی م.،"مطالعه خواص هیدریدی پودر کامپوزیتی نانوساختارMgH2و ترکیب سه تایی غنی از نیکلNi-Mg-Yتهیه شده به وسیله آسیاکاری مکانیکی"، پایان‌نامه دکتری،دانشکده مهندسی مواد و متالورژی، دانشگاه تهران، (1392).
19. Simchi H., Kaflou A., Simchi A., "Synergic effect of Ni and Nb2O5 on dehydrogenation properties of nanostructured MgH2 synthesized by high-energy mechanical alloying", International Journal of Hydrogen Energy, Vol. 34, pp. 7724-7730, (2009).
20. Liang G., Hout J., Boily S., Van Neste A., Schulz R., "Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled MgH2-Tm(Tm=Ti, V, Mn, Fe, and Ni) systems", Journal of Alloys and Compounds, Vol. 292, pp. 247-252, (1999).
21. Wang P., Wang A.M., Zhang H.F., Ding B.Z., Hu, Z.Q., "Hydrogenation characteristic of Mg-TiO2 (rutile) composite", Journal of Alloys and Compounds, Vol. 313, pp. 218-223, (2000).
22. Li F., Jiang L., Du J., Wang S., Liu X., Zhan F., "Investigation on synthesis and hydrogenation properties of of Mg-20wt.%Ni-1wt.%TiO2 composite prepared by reactive mechanical alloying", Journal of Alloys and Compounds, Vol. 452, pp. 421-424, (2008).
23. Shang C.X., Guo Z.X., "Effect of carbon on hydrogen desorption and absorption of mechanically milled MgH2", Journal of Power Sources, Vol. 129, pp. 73-80, (2004).
CAPTCHA Image