1. Cheng K., Ramakrishna S., Lee K., "Electromagnetic shielding effectiveness of copper/glass fiber knitted fabric reinforced polypropylene composites", Composites Part A: Applied Science and Manufacturing, Vol. 31, No. 10, pp. 1039-1045, (2000).
2. Ozimek M., Gaworska-Koniarek D., Wilczyński W., "Shields of Electromagnetic Wave Based on Amorphous and Nanocrystalline Soft Magnetic Materials", International Conference on Environment and Electrical Engineering (EEEIC 2009): Karpacz, Polan, (2009).
3. Verma P., et. al., "Excellent electromagnetic interference shielding and mechanical properties of high loading carbon-nanotubes/polymer composites designed using melt recirculation equipped twin-screw extruder", Carbon, Vol. 89, pp. 308-317, (2015).
4. Gupta A., Choudhary V., "Electromagnetic interference shielding behavior of poly (trimethylene terephthalate)/multi-walled carbon nanotube composites", Composites Science and Technology, Vol. 71, No. 13, pp. 1563-1568, (2011).
5. Jia L.-C., et. al., "Electrically conductive and electromagnetic interference shielding of polyethylene composites with devisable carbon nanotube networks", Journal of Materials Chemistry C, Vol. 3, No. 36, pp. 9369-9378, (2015).
6. Singh A.P., et. al., "Probing the engineered sandwich network of vertically aligned carbon nanotube–reduced graphene oxide composites for high performance electromagnetic interference shielding applications", Carbon, Vol. 85, pp. 79-88, (2015).
7. Zhang L., et. al., "Preparation and characterization of graphene paper for electromagnetic interference shielding", Carbon, Vol. 82, pp. 353-359, (2015).
8. Su C.-I., Chern J.-T., "Effect of stainless steel-containing fabrics on electromagnetic shielding effectiveness", Textile Research Journal, Vol. 74, No. 1, pp. 51-54, (2004).
9. Huber R., et. al., "Exposure to pulsed high‐frequency electromagnetic field during waking affects human sleep EEG", Neuroreport, Vol. 11, No. 15, pp. 3321-3325, (2000).
10. Yuping D., Shunhua L., Hongtao G., "Investigation of electrical conductivity and electromagnetic shielding effectiveness of polyaniline composite", Science and Technology of Advanced Materials, Vol. 6, No. 5, pp. 513-518, (2005).
11. Neelakanta P.S., "Handbook of electromagnetic materials: monolithic and composite versions and their applications", CRC press, (1995)
12. Chung D., "Materials for electromagnetic interference shielding", Journal of Materials Engineering and Performance, Vol. 9, No. 3, pp. 350-354, (2000).
13. Shahzad F., et. al., "Electromagnetic interference shielding with 2D transition metal carbides (MXenes)", Science, Vol. 353, No. 6304, pp. 1137-1140, (2016).
14. Cao M.-S., et. al., "Ultrathin graphene: electrical properties and highly efficient electromagnetic interference shielding", Journal of Materials Chemistry C, Vol. 3, No. 26, pp. 6589-6599, (2015).
15. Yang S., et. al. "Electromagnetic interference shielding effectiveness of carbon nanofiber/LCP composites", Composites Part A: applied science and manufacturing, Vol. 36, No. 5, pp. 691-697, (2005).
16. Jou W.-S., Cheng H.-Z., Hsu C.-F., "The electromagnetic shielding effectiveness of carbon nanotubes polymer composites", Journal of Alloys and Compounds, Vol. 434, pp. 641-645, (2007)
17. Yan D.X., et. al., "Structured Reduced Graphene Oxide/Polymer Composites for Ultra‐Efficient Electromagnetic Interference Shielding", Advanced Functional Materials, Vol. 25, No. 4, pp. 559-566, (2015).
18. Shi S.-L., Liang J., "The effect of multi-wall carbon nanotubes on electromagnetic interference shielding of ceramic composites", Nanotechnology, Vol. 19, No. 25, pp. 255707, (2008).
19. Yang Y., et. al., "Novel Carbon Nanotube−Polystyrene Foam Composites for Electromagnetic Interference Shielding", Nano Letters, Vol. 5, No. 11, pp. 2131-2134, (2005).
20. Kong K., et. al., "Effect of processing methods and functional groups on the properties of multi-walled carbon nanotube filled poly (dimethyl siloxane) composites", Polymer bulletin, Vol. 69, No. 8, pp. 937-953, (2012).
21. Mathur R., et. al., "Electrical and mechanical properties of multi‐walled carbon nanotubes reinforced PMMA and PS composites", Polymer Composites, Vol. 29, No. 7, pp. 717-727, (2008).
22. Micheli D., et. al., "Electromagnetic characterization and shielding effectiveness of concrete composite reinforced with carbon nanotubes in the mobile phones frequency band", Materials Science and Engineering: B, Vol. 188, pp. 119-129, (2014).
23. Hayashida K., Matsuoka Y., "Electromagnetic interference shielding properties of polymer-grafted carbon nanotube composites with high electrical resistance", Carbon, Vol. 85, pp. 363-371, (2015).
24. Kotsilkova R., et. al., "Effects of sonochemical modification of carbon nanotubes on electrical and electromagnetic shielding properties of epoxy composites", Composites Science and Technology, Vol. 106, pp. 85-92, (2015).
25. Liu Z., Chen Y., "Reflection and absorption contributions to the electromagnetic interference shielding of single-walled carbon nanotube/polyurethane composites", Carbon, Vol. 45, No. 4, pp. 821-827, (2007).
26. Al-Saleh M.H., "Influence of conductive network structure on the EMI shielding and electrical percolation of carbon nanotube/polymer nanocomposites", Synthetic Metals, Vol. 205, pp. 78-84, (2015).
27. Chen Y., et. al., "Enhanced electromagnetic interference shielding efficiency of polystyrene/graphene composites with magnetic Fe3O4 nanoparticles", Carbon, Vol. 82, pp. 67-76, (2015).
28. Xiang C., Pan Y., Guo J., "Electromagnetic interference shielding effectiveness of multiwalled carbon nanotube reinforced fused silica composites", Ceramics international, Vol. 33, No. 7, pp. 1293-1297, (2007).
Send comment about this article