بررسی اثر شدت فعال‌سازی مخلوط پودری TiO2-Al در سنتز مایکروویوی کامپوزیت TiAl/Al2O3

نوع مقاله : علمی و پژوهشی

نویسندگان

1 دانشگاه علم وصنعت ایرن

2 دانشگاه علم و صنعت ایران

3 دانشگاه علم وصنعت ایران

چکیده

در این تحقیق کامپوزیت TiAl/Al2O3 از طریق فعال‌سازی مکانیکی مخلوط پودری TiO2-Al و گرمایش مایکروویوی بدست آمد. مخلوط پودری اولیه پس از آسیاکاری به صورت قرص‌های استوانه‌ای شکل فشرده شد و سپس تحت گرمادهی مایکروویو قرار گرفت. از آنالیزهای پراش پرتو ایکس و میکروسکوپ الکترونی جهت بررسی ساختاری نمونه‌ها پس از سنتز استفاده شد. اثر شدت فعال‌سازی بر زمان اشتعال نمونه‌ها و ترکیب فازی کامپوزیت سنتز شده مورد بررسی قرار گرفت. همچنین درصد حجمی فازهای تشکیل شده با استفاده از الگوی پراش پرتو ایکس و نرم‌افزار محاسبه شد. نتایج تشکیل محصول کامپوزیتی و حضور فاز TiAl و ذرات آلومینا را تأیید کرد. فاز غالب تشکیل شده در نمونه‌ها آلومینا با مقدار حدود 75-65 درصد حجمی و مقدار ترکیب بین‌فلزی تیتانیم آلومیناید بین 30-18 درصد حجمی متغیر بود. همچنین معلوم شد که افزایش شدت فعال‌سازی زمان اشتعال را ابتدا کاهش و سپس افزایش می‌دهد. در شرایط بهینه با زمان اشتعال 27 ثانیه، محصول کامپوزیتی از ساختار یکنواخت‌تر و با تخلخل کمتری برخوردار بوده و شامل 2/23% :TiAl و 6/69% :Al2O3 می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Milling Intensity of TiO2-Al Powder Mixture on Microwave Synthesis of TiAl/Al2O3 Composite

نویسندگان [English]

  • Parisa Radmehr 1
  • Alireza Zakeri 2
  • Somaye Alamolhoda 3
1 Iran University of Science and Technology (IUST)
2 Iran University of Science and Technology (IUST)
3 Iran University of Science and Technology (IUST).
چکیده [English]

In this research, TiAl/Al2O3 composite was synthesized from mechanically activated TiO2-Al powder mixtures using microwave heating. The powder mixtures were heated in a microwave oven after milling and pressing into cylindrical tablets. The effect of mechanical activation intensity was evaluated on the ignition time and the resultant reaction products. XRD and SEM analysis were used for evaluation of the synthesized samples. Moreover, the volume percent of the formed phases was calculated from XRD patterns using Maud software. The results confirmed that the composites mainly consist of TiAl and dispersed Al2O3 particles. The dominant phase is Al2O3 with 65-75 vol.% and the amount of TiAl phase varies from 18 to 30 vol.%. The results revealed that with increasing the intensity of activation, the ignition time first decreased and then increased. At optimum condition with an ignition time of 27 s, the composite structure is more uniform and less porous and it consists of 23.2% TiAl and 69.6% Al2O3.

کلیدواژه‌ها [English]

  • Titanium Aluminide/Alumina Composite
  • Combustion Synthesis
  • mechanical activation
  • Microwave Heating
1. Westbrook J.H., Flieischer R.L., "Intermetallic Compounds-Principles & Practice", John Wiley & Sons, Vol. 2, (2002).
2. Djanarthany S., Viala J., Bouix J., "An Overview of Monolithic Titanium Aluminides Based on Ti3Al and TiAl", Materials Chemistry and Physics, Vol. 72, pp. 301-319, (2001).
3. Ward-Close C.M., Minor R., Doorbar P.J., "Intermetallic-Matrix Composites–a Review", Intermetallics, Vol. 4, pp. 217-229, (1996).
4. Travitzky N., Gotman I., Claussen N., "Alumina–Ti Aluminide Interpenetrating Composites: Microstructure and Mechanical Properties", Materials Letters, Vol. 57, pp. 3422-3426, (2003).
5. Zhang D.L., Cai Z.H., Adam, G., "The Mechanical Milling of Al/TiO2 Composite Powders", JOM: Journal of the Minerals, Metals & Materials Society, Vol.18, pp. 94-98, (2003).
6. Ward-Close C.M., Minorb R., Doorbarb P.J., "Intermetallic matrix composites-a review", Intermetallics, Vol. 4, pp. 217-229, (1996).
7. Khatri S., Koczak M., "Formation of TiC in In Situ Processed Composites via Solid-Gas, Solid-Liquid and Liquid-Gas Reaction in Molten A1-Ti", Materials Science and Engineering, Vol. 162, pp. 153-162, (1993).
8. Han C.Z., Brown I.W.M., Zhang D.L., "Microstructure development and properties of alumina-Ti aluminide interpenetrating composites", Current Applied Physics, Vol. 6, pp. 444-447, (2006).
9. Alamolhoda S., HeshmatiManesh S., Ataie A., "Role of intensive milling in mechano-thermal processing of TiAl/Al2O3", Advanced powder technology, Vol. 23, pp. 343-348, (2012).
10. Cai Z.H., Zhang D.L., "Sintering behavior and microstructures of Ti(Al,O)/Al2O3, Ti3Al(O)/Al2O3 and TiAl(O)/Al2O3 in situ composites", Materials Science and Engineering A, Vol. 419, pp. 310–317, (2006).
11. Zhang D.L., Cai Z.H., Newby M., "low cost Ti(Al,O)/Al2O3 and TixAly/Al2O3 composites", Materials Technology Advanced Performance Materials, Vol. 18, pp. 94-97, (2003).
12. Gaus S.P., Harmer P.H., Chan H.M., "Alumina-aluminide alloys (3A) technology: II, modeling of TixAly-Al2O3 composites formation", Journal of the American ceramic society, Vol. 83, pp. 1606-1612, (2000).
13. Ying D.Y., Zhang D.L., Newby M., "Solid state reactions during heating mechanically milled Al/TiO2 composite powders", Metallurgical and Materials Transactions A, Vol. 35, pp. 2115-2125, (2004).
14. Fan R., Liu B., Zhang J., Bi J., Yin Y., "Kinetic evaluation of combustion synthesis 3TiO2 + 7Al → 3TiAl + 2Al2O3 using non-isothermal DSC method", Materials Chemistry and Physics, Vol. 91, pp. 140–145, (2005).
15. Ku H., Siores E., Taube A., Ball J.A., "Productivity Improvement Through the Use of Industrial Microwave Technologies", Computers & Industrial Engineering, Vol. 42, pp. 281-290, (2002).
16. Gupta M., Wai Leang W., "Microwaves & Metals", John Wiley & Sons, pp. 26-175, (2007).
17. Lekse J.W., Stagger T.J., Atiken J.A., Pennsyl V., March R.V., "Microwave Metallurgy: Synthesis of intermetallic compound via microwave irradiation", Chemistry of Materials, Vol. 19, pp. 3601-3603, (2007).
18. National Research Centre (NRC), "Microwave processing of materials, National materials advisery board, commission on engineering and technical systems", National Academy Press, USA, Vol. 1-7, pp. 10-105, (1994).
19. Gedevanishvili S., Agrawal, D., Roy R., "Microwave combustion synthesis and sintering of intermetallics and alloys", Journal of materials science letters, Vol. 18, pp. 665-668, (1999).
20. Orru R., Cao G., Munir Z.A., "Mechanistic Investigation of the Field-Activated Combustion Synthesis (FACS) of Titanium Aluminides", Chemical Engineering Science, Vol. 54, pp. 3349-3355, (1999).
21. Horvitz D., Gotman I. , Gutmanas E.Y., Claussen N., "In Situ Processing of Dense Al2O3 - Ti Aluminide Interpenetrating Phase Composites", Journal of the European Ceramic Society, Vol. 22, pp. 947-954, (2002).
22. Yeh C.L., Li R.F., "Formation of TiAl-Ti5Si3 and TiAl-Al2O3 In Situ Composites by Combustion Synthesis", Journal of Alloys and Compounds, Vol. 16, pp. 64-70, (2008).
23. Ghafurian, S., Seyedein S.H., Aboutalebi M.R., Afshar M.R., "Numerical Modeling of Combustion Synthesis of TiAl/Al2O3 Composite via Microwave Heating", Iranian Journal of Materials Science & Engineering, Vol. 8, pp. 8-16, (2011).
24. Heegn H., "Mechanical Induced Changes in Structure and Properties of Solids, Proceedings of the XXI International Mineral Processing Congress", Part A4, Comminution, Classification and Agglomeration, Rome, Italy, pp. 52–59, (2000).
25. Cao G.H., Liu Z.G., Shen G.J., Liu J.M., "Identification of a Cubic Precipitate in γ-Titaniumaluminides", Journal of Alloys and Compounds, Vol. 325, pp. 263-268, (2001).
26. Golkar G., Zebarjad S.M., Vahdati J., "Optimizing the Ignition Behavior of Microwave-Combustion Synthesized Al2O3/TiC Composite Using Taguchi Robust Design Method", Journal of Alloys & Compounds, Vol. 487, pp. 751-757, (2009).
27. Sujata M., Bhargava S., Sangal S., "On the Formation of TiAl3 During Reaction Between Solid Ti and Liquid Al", Journal of Materials Science Letters, Vol. 16, pp. 1175-11784, (1997).
CAPTCHA Image