سنتز و مشخصه‌یابی جاذبهای TiO2/Ag برای حذف H2S از پسابهای صنعتی

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی مواد، دانشکده فنی مهندسی گلپایگان، دانشگاه صنعتی اصفهان، گلپایگان.

چکیده

در این تحقیق ذرات TiO2/Ag با استفاده از یک روش احیایی بمنظور حذف قابل توجهی از گاز سولفید هیدروژن از پسابهای پالایشگاهی سنتز شد. همچنین ذرات فرآوری شده TiO2/Ag با استفاده از تکنیک‌های مختلفی مانند XRD، SEM، FTIR، UV-Vis و DSC مشخصه‌یابی گردیدند. آنالیز XRD انجام شده موید این واقعیت هستند که مواد سنتز شده دارای شبکه کریستالی تتراگونال بوده و مواد فرآوری شده فاقد هرگونه فازهای دیگر و ناخالصی است. نتایج حاصل از تصاویر SEM نشان داد که اندازه ذرات فرآوری شده TiO2/Ag عمدتا در محدوده تقریبی 120 تا 160 نانومتر بوده و از توزیع یکنواختی برخوردار هستند ضمن آنکه مطابق با نتایج آزمون EDX-Map مشاهده گردید که عناصر مختلف و از جمله نقره با کیفیت مطلوبی در مواد سنتز شده توزیع شده‌اند. آنالیز حرارتی مواد سنتز شده تا دمای 1000 درجه سانتیگراد نشان داد که پیک-های ایجاد شده در دماهای 47 و 310 درجه سانتیگراد به ترتیب مربوط به تبخیر آب سطحی و حذف فازهای آلی بوده و حدود 5/1 درصد از وزن آنها کاهش یافته است. در نهایت آنالیز UV-Vis نشان داد که با بخدمت گیری مواد جاذب سنتز شده میزان عبور نور از پسابها به میزان قابل قبولی افزایش و در واقع تصفیه پسابها تا حدود مناسبی انجام شده است. این پدیده به واکنش میان Ag و H2S موجود در پساب و تشکیل Ag2S نسبت داده می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Synthesis and Characterization of TiO2/Ag Adsorbents for H2S Removal from Industrial Wastewater

نویسندگان [English]

  • Mahdi Soleimani
  • Seyed Mahdi Rafiaei
Materials Engineering Group, Golpayegan College of Engineering, Isfahan University of Technology, Golpayegan, Iran.
چکیده [English]

In this study, TiO2/Ag particles were synthesized using a reduction method for significant removal of hydrogen sulfide gas from refinery wastewater. Also, the processed TiO2/Ag particles were characterized using various techniques such as XRD, SEM, FTIR, UV-Vis and DSC. The XRD analysis confirmed the fact that the synthesized materials have a tetragonal crystal lattice and the processed materials are free of any other phases and impurities. The results of SEM images showed that the size of the processed TiO2/Ag particles was mainly in the range of approximately 120 to 160 nm and had a uniform distribution. In addition, according to the results of the EDX-Map test, it was observed that various elements, including silver, were distributed with desirable quality in the synthesized materials. Thermal analysis of the synthesized materials up to 1000 ֯C showed that the peaks formed at temperatures of 47 and 310 ꞌC were related to the evaporation of surface water and the removal of organic phases, respectively, and about 1.5% of their weight was reduced. Finally, UV-Vis analysis showed that by using the synthesized absorbent materials, the light transmission rate from the wastewater increased to an acceptable level and, in fact, the wastewater was treated to an appropriate extent. This phenomenon is attributed to the reaction between Ag and H2S in the wastewater and the formation of Ag2S.

کلیدواژه‌ها [English]

  • Refinery wastewater
  • hydrogen sulfide
  • TiO2
  • TiO2/Ag
  1. M. Rafiaei, G. Dini, and A. Bahrami, “Synthesis, crystal structure, optical and adsorption properties of BaAl₂O₄: Eu²⁺, Eu²⁺/L³⁺ (L = Dy, Er, Sm, Gd, Nd, and Pr) phosphors,” Ceramics International, vol. 46, no. 12, pp. 20243–20250, 2020. https://doi.org/10.1016/j.ceramint.2020.05.106
  2. K. Habibi, S.M. Rafiaei, A. Alhaji, M. Zare, “ZnAl2O4: Ce3+ phosphors: Study of crystal structure, microstructure, photoluminescence properties and efficient adsorption of congo red dye,” Journal of Molecular Structure, vol. 1228, no. 15, p. 129769, 2021. https://doi.org/10.1016/j.molstruc.2020.129769
  3. K. Habibi, S. M. Rafiaei, A. Alhaji, and M. Zare, “Synthesis of ZnFe₂O₄: 1 wt% Ce³⁺/Carbon fibers composite and investigation of its adsorption characteristic to remove Congo red dye from aqueous solutions,” Journal of Alloys and Compounds, vol. 890, p. 161901, 2022. https://doi.org/10.1016/j.jallcom.2021.161901
  4. Q. Salih, L. Steiner, W. Goessler, J. R. Hama, and B. Lajin, “Urinary excretion of H₂S methylation metabolites in oil refinery workers,” Toxicology Letters, vol. 401, pp. 82–88, 2024. https://doi.org/10.1016/j.toxlet.2024.09.007
  5. Vakili and P. Koutnik, “Addressing hydrogen sulfide corrosion in oil and gas industries: A sustainable perspective,” Sustainability, vol. 16, no. 4, p. 1661, 2024. https://doi.org/10.3390/su16041661
  6. C. Nailwal, J. Salvi, P. Chotalia, N. Goswami, L. Muhmood, S. Kar, and A. K. Adak, “Enhanced H₂S decomposition using membrane reactor,” International Journal of Hydrogen Energy, vol. 70, no. 12, pp. 1573–1585, 2024. https://doi.org/10.1016/j.ijhydene.2024.05.195
  7. Moradirad, H. Asilian, and S. J. Shahtaheri, “Investigating the factors affecting the optimization of hydrogen sulfide gas adsorption parameters on the new MIPs@H₂S nanoadsorbent using the response surface method,” International Journal of Environmental Science and Technology, vol. 21, no. 14, pp. 8943–8958, 2024. https://doi.org/10.1007/s13762-024-05585-w
  8. Y. Lee, M. Y. Kim, K. H. Lee, S. Han, S. Y. Lee, A. Mirzaei, S. W. Choi, M. S. Choi, C. Jin, and J. Y. Hwang, “Surface reaction mechanism and characteristics of 2-dimensional TiO₂ and 0-dimensional Ag nanocomposites specialized for H₂S gas sensing at room temperature,” Sensors and Actuators Reports, vol. 9, p. 100290, 2025. https://doi.org/10.1016/j.snr.2025.100290
  9. Sun, K. Vikrant, K.-H. Kim, and D. W. Boukhvalov, “Titanium dioxide–supported mercury photocatalysts for oxidative removal of hydrogen sulfide from the air using a portable air purification unit,” Journal of Hazardous Materials, vol. 470, p. 134089, 2024. https://doi.org/10.1016/j.jhazmat.2024.134089
  10. Motamedi and A. H. Sari, “Plasma effect on the NO, CO, and SO₂ gases pollutant removal using AC/MgO/Fe₂O₃/TiO₂/ZnO/Zeolite nanocomposite,” Case Studies in Chemical and Environmental Engineering, vol. 10, p. 100890, 2024. https://doi.org/10.1016/j.cscee.2024.100890
  11. Alaya, M. Madani, N. Bouguila, L. El Mir, E. Fazio, C. Corsaro, and G. Neri, “Conductometric H₂S sensors based on TiO₂ nanoparticles,” Materials, vol. 17, no. 13, p. 3283, 2024. https://doi.org/10.3390/ma17133283
  12. K. Baboukani, A. N. Chermahini, and H. Farrokhpour, “Photocatalytic oxidative desulfurization of a model fuel using S-doped TiO₂/BiVO₄ composites: A combination of experimental and theoretical study,” Journal of Alloys and Compounds, vol. 1002, p. 175478, 2024. https://doi.org/10.1016/j.jallcom.2024.175478
  13. Talwar, S. Anand, A. Nayyar, F. Fatima, and M. Zahera, “Hybrid nanomaterials: A sustainable tool to detect environmental problems,” in Technological Applications of Nano-Hybrid Composites, V. Khanna, P. Sharma, and P. Mahajan, Eds. Hershey, PA, USA: IGI Global, 2024, pp. 34–63. https://doi.org/10.4018/979-8-3693-1261-2.ch003
  14. Yu, Z. Deng, Y. Li, and X. Wang, “Advances in electrocatalyst design and mechanism for sulfide oxidation reaction in hydrogen sulfide splitting,” Advanced Functional Materials, vol. 34, no. 39, p. 2403435, 2024. https://doi.org/10.1002/adfm.202403435
  15. Huang, G. He, Y. Zhang, and X. Liu, “Trivalent metal ions (Al, Ga, In)-doped TiO₂ for enhanced photocatalytic desulfurization of H₂S: Band structure regulation, performance, and mechanism,” Industrial & Engineering Chemistry Research, vol. 63, no. 16, pp. 6253–6264, 2024. https://doi.org/10.1021/acs.iecr.4c00074
  16. Y. Tee, J. Kong, J. J. Koh, C. P. Teng, X. Z. Wang, X. Wang, S. L. Teo, W. Thitsartarn, M.-Y. Han, and Z. W. Seh, “Structurally and surficially activated TiO₂ nanomaterials for photochemical reactions,” Nanoscale, vol. 16, no. 39, pp. 18345–18372, 2024. https://doi.org/10.1039/D4NR02342K
  17. Rychtowski, O. Paszkiewicz, A. Markowska-Szczupak, G. Leniec, and B. Tryba, “Sulphated TiO₂ reduced by ammonia and hydrogen as an excellent photocatalyst for bacteria inactivation,” Materials, vol. 17, no. 1, p. 66, 2023. https://doi.org/10.3390/ma17010066
  18. Du, N. S. Said, and W. Y. Lee, “Development of pH-sensitive intelligent films incorporating betacyanin from dragon fruit peel and TiO₂ nanoparticles for monitoring fish fillet freshness,” Sustainable Chemistry and Pharmacy, vol. 42, p. 101839, 2024. https://doi.org/10.1016/j.scp.2024.101839
  19. B. Akhani, J. Pathak, T. K. Akhani, and M. S. Rathore, “Structural and optical properties of Mg doped TiO₂ nanoparticles synthesized by sol-gel method,” Materials Today: Proceedings, vol. 82, pp. 694–701, 2024. https://doi.org/10.1016/j.matpr.2024.02.029
  20. Kumar, A. Pandey, A. Vishvakarma, A. Kumar, L. Kumar, and B. P. Singh, “Growth of MAPbI₃ perovskite films on MWCNT-modified TiO₂ thin films for solar cell applications,” Inorganic Chemistry Communications, vol. 163, p. 112360, 2024. https://doi.org/10.1016/j.inoche.2024.112360
  21. Shahzad, M. Jamshaid, A. E.-Z. M. Mustafa, H. Rizwana, R. Iqbal, M. A. Watto, S. Jabeen, A. A. Tahir, and A. U. Rehman, “Synergistic silver-titania nano-composites: Optimized hetero-junction for enhanced water decontamination,” Desalination and Water Treatment, vol. 320, p. 100696, 2024. https://doi.org/10.1016/j.dwt.2024.100696
  22. Nakamura and Y. Nakato, “Primary intermediates of oxygen photoevolution reaction on TiO₂ (rutile) particles, revealed by in situ FTIR absorption and photoluminescence measurements,” Journal of the American Chemical Society, vol. 126, no. 4, pp. 1290–1298, 2004. https://doi.org/10.1021/ja0388764
  23. Yan, X. Yang, P. Ning, C. Wang, X. Sun, F. Wang, P. Gao, and K. Li, “Cu/TiO₂ adsorbents modified by air plasma for adsorption–oxidation of H₂S,” Journal of Environmental Sciences, vol. 148, pp. 476–488, 2025. https://doi.org/10.1016/j.jes.2023.09.023
  24. V. Mikhaylov, A. A. Lisachenko, B. N. Shelimov, V. B. Kazansky, G. Martra, G. Alberto, and S. Coluccia, “FTIR and TPD analysis of surface species on a TiO₂ photocatalyst exposed to NO, CO, and NO–CO mixtures: Effect of UV–Vis light irradiation,” The Journal of Physical Chemistry C, vol. 113, no. 47, pp. 20381–20387, 2009. https://doi.org/10.1021/jp906176c
  25. A. Ouda, F. K. M. Alosfur, N. J. Ridha, S. H. Abud, N. M. Umran, H. H. Al-aaraji, and R. A. Madlool, “Facile method to synthesis of anatase TiO₂ nanorods,” Journal of Physics: Conference Series, vol. 1032, no. 1, p. 012038, 2018. https://doi.org/10.1088/1742-6596/1032/1/012038
  26. M. Rafiaei, T. D. Isfahani, H. Afshari, and M. Shokouhimehr, “Improved optical properties of YVO₄: Eu³⁺ nano–layers on silica spheres,” Materials Chemistry and Physics, vol. 203, pp. 274–279, 2017. https://doi.org/10.1016/j.matchemphys.2017.10.027
  27. M. Rafiaei, M. Shokouhimehr, “Synthesis and luminescence properties of transparent YVO₄: Eu³⁺ phosphors,” Materials Research Express, vol. 5, no. 11, p. 116208, 2018. https://doi.org/10.1088/2053-1591/aadd89
  28. M. Rafiaei and M. Shokouhimehr, “Effect of fuels on nanostructure and luminescence properties of combustion synthesized MgAl₂O₄: Eu³⁺ phosphors,” Journal of Molecular Structure, vol. 1193, pp. 274–279, 2019. https://doi.org/10.1016/j.molstruc.2019.05.057
  29. M. Rafiaei, “Evaluation of (GdₓY₁₋ₓ)VO₄:Er³⁺ (x = 0, 0.25, 0.5, 0.75, 1) compounds: Study of crystal structure, microstructure, luminescence and adsorption properties,” Ceramics International, vol. 48, no. 10, pp. 14913–14919, 2022. https://doi.org/10.1016/j.ceramint.2022.02.286
  30. Paradisi, P. J. Plaza-González, G. Baldi, J. M. Catalá-Civera, and C. Leonelli, “On the use of microwaves during combustion/calcination of N-doped TiO₂ precursor: An EMW absorption study combined with TGA-DSC-FTIR results,” Materials Letters, vol. 338, p. 133975, 2023. https://doi.org/10.1016/j.matlet.2023.133975
  31. K. Hassan, W. H. Mahmoud, A. Al-sayed, S. H. Ismail, A. A. El-Sherif, and S. M. Abd El Wahab, “Multi-functional of TiO₂@Ag core–shell nanostructure to prevent hydrogen sulfide formation during anaerobic digestion of sewage sludge with boosting of bio-CH₄ production,” Fuel, vol. 333, no. 2, p. 126608, 2023. https://doi.org/10.1016/j.fuel.2022.126608
CAPTCHA Image