ارزیابی رفتار فشاری فوم‌های فولادی تولیدشده به‌روش متالورژی پودر

نوع مقاله : علمی و پژوهشی

نویسندگان

1 گروه مهندسی صنایع، دانشکده مهندسی، دانشگاه صنعتی قوچان، قوچان.

2 گروه مهندسی مکانیک، دانشکده مهندسی، دانشگاه صنعتی قوچان، قوچان.

3 مهندسی مکانیک، دانشکده مهندسی، دانشگاه صنعتی قوچان، قوچان.

چکیده

فوم‌های فلزی و فلزات سلولی دسته‌ای از مواد مهندسی نوظهور هستند که به‌دلیل داشتن رفتار و ویژگی‌های منحصربه‌فرد می‌توانند در بسیاری از کاربردهای صنعتی به‌صورت موفقیت‌آمیز استفاده شوند. در این پژوهش، فوم‌های فولادی به‌روش متالورژی پودر و با استفاده از اوره به‌عنوان پرکنندۀ فضا یا فضاساز تولید شدند و درصد تخلخل، ریزساختار و رفتار فشاری آن‌ها مطالعه شد. علاوه‌براین، رفتار فشاری فوم‌های تولیدی به کمک روش اجزای محدود و برپایه مدل گارسون-تورگارد-نیدلمن شبیه‌سازی و اثر پارامترهای مؤثر در مدل یادشده برای پیش‌بینی بهتر رفتار فوم‌های فولادی بررسی شد. نتایج حاکی از آن است که میانگین میزان تخلخل در فوم‌های فولادی برابر 3/79درصد است که شامل سلول‌های تشکیل‌شده در اثر انحلال دانه‌های اوره و حفرات باقی‌مانده در بین ذرات آهن تف‌جوشی‌شده است. منحنی‌های‌ تنش-کرنش فشاری فوم‌های فولادی تولیدشده بیانگر رفتار مرسوم فوم‌های فلزی است و دارای نواحی تغییر شکل کشسان و پلاتو دندانه اره‌ای نسبتاً طولانی و درنهایت، نقطه شکست است. نتایج شبیه‌سازی پیش‌بینی می‌کند که اندازۀ مش، fn، q1 و q2 بر روی منحنی‌های تنش-کرنش فشاری مؤثرند، اما q1 بیشترین تأثیر و fn کمترین تأثیر را دارند.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation on the Compressive Behavior of Steel Foams Manufactured by Powder Metallurgy Route

نویسندگان [English]

  • Hamid Sazegaran 1
  • Ali Mohamad Naserian Nik 2
  • Mohamad Reza Akbari 3
  • Ali Akbari Nejad Fogh 3
1 Department of Industrial Engineering, Faculty of Engineering, Quchan University of Technology, Quchan, Iran.
2 Department of Industrial Engineering, Faculty of Engineering, Quchan University of Technology, Quchan, Iran.
3 Department of Industrial Engineering, Faculty of Engineering, Quchan University of Technology, Quchan, Iran.
چکیده [English]

Metallic foams and cellular metals are a type of new-advanced engineering materials which can be successfully used in various industrial applications due to their unique behavior and properties. In this work, steel foams were produced through powder metallurgy route using urea granules as a space holder, and porosity percentage, microstructure, and compressive behavior of them were investigated. In addition, the compressive behavior of manufactured foams was simulated using finite element method by the Gurson–Tvergaard–Needleman model and the effects of operational parameters in this model were investigated due to better prediction of mechanical behavior of steel foams. The results indicated that the average of porosity in the steel foam is 79.3 percent, which consists of cells formed by the dissolution of urea granules and remained pores between the sintered iron particles. Stress vs. strain curves of the manufactured steel foams showed the conventional behavior of metal foams, with elastic deformation region and a relatively longitudinal plateau region and, a fracture point, finally. Mesh sizes, fn, q1 and q2 have the significant effect on stress vs. strain curves, but q1 and fn have the most and the least effects, respectively.

کلیدواژه‌ها [English]

  • Steel foam
  • Compressional behavior
  • Gurson–Tvergaard–Needleman model
  • Saw-tooth plateau
  • Simulation parameter
1.    Ashby, M. F., Evans, A. G., Fleck, N. A., Gibson, L. J., Hutchinson, J. W., Wadley, H. N. G., "Metal Foams: A Design Guide", Elsevier, Boston, pp. 25-112, (2000).
2.    Banhart, J., "Manufacture, characterisation and application of cellular metals and metal foams", Progress Material Science, Vol. 46, pp. 559-632, (2001).
3.    Sazegaran, H., Kiani-Rashid, A. R., Vahdati Khaki, J., "Effects of sphere size on the microstructure and mechanical properties of ductile iron–steel hollow sphere syntactic foams", International Journal of Minerals, Metallurgy and Materials, Vol. 23, pp. 676-682, (2016).
4.    Gibson, L. J., Ashby, M. F., Cellular Solids–Structures and Properties, 2nd ed., pp. 78 Cambridge University Press, Cambridge, (1997).
5.    Aida, S. F., Hijrah, M. N.,  Amirah, A. H., Zuhailawati, H., Anasyida, A. S., "Effect of NaCl as a Space Holder in Producing Open Cell A356 Aluminium Foam by Gravity Die Casting Process",Procedia Chemistry, Vol. 19, pp. 234-240, (2016).
6.    Kadkhodapour, J., Montazerian, H., Samadi, M., Schmauder, S., Abouei Mehrizi, A., "Plastic deformation and compressive mechanical properties of hollow sphere aluminum foams produced by space holder technique", Materials and Design, Vol. 83, pp. 352-362, (2015).
7.    Smith, B. H., Szyniszewski, S., Hajjar, J. F., Schafer, B. W., Arwade, S. R., "Steel foam for structures: A review of applications, manufacturing and material properties", Journal of Constructional Steel Research, Vol. 71, pp. 1-10, (2012).
8.    Takata, N., Uematsu, K., Kobashi, M., "Compressive properties of porous Ti-Al alloys fabricated by reaction synthesis using a space holder powder", Material Science and Engineering A, Vol. 697, pp. 66-70, (2017).
9.    Noorsyakirah, A., Mazlan, M., Afian, O. M., Aswad, M. A., Jabir, S. M., Nurazilah, M. Z., Afiq, N. H. M., Bakar, M., Nizam, A. J. M., Zahid, O. A., Bakri, M. H. M., "Application of Potassium Carbonate as Space Holder for Metal Injection Molding Process of Open Pore Copper Foam", Procedia Chemistry, Vol. 19, pp. 552-557, (2016).
10.  Raj, S. V., Ghosn, L. J., Lerch, B. A., Hebsur, M., Cosgriff, L. M., Fedor, J., "Mechanical properties of 17-4PH stainless steel foam panels", Material Science and Engineering A, Vol. 456, pp. 305-316, (2007).
11.  Park, C., Nutt, S. R., "Effects of process parameters on steel foam synthesis", Material Science and Engineering A, Vol. 297, pp. 62-28, (2001).
12.  Park, C., Nutt, S. R., "PM synthesis and properties of steel foams", Material Science and Engineering A, Vol. 288, pp. 111-118, (2000).
13.  Golabgir, M. H., Ebrahimi-Kahrizsangi, R., Torabi, O., Tajizadegan, H., Jamshidi, A., "Fabrication and evaluation of oxidation resistance performance of open-celled Fe(Al) foam by space-holder technique", Advanced Powder Technology, Vol. 25, pp. 960-967, (2014).
14.  Bekoz, N., Oktay, E., "Effects of carbamide shape and content on processing and properties of steel foams", Journal of Materials Processing Technology, Vol. 212, pp. 2109-2116, (2012).
15.  Bekoz, N., Oktay, E., "Effect of heat treatment on mechanical properties of low alloy steel foams", Materials and Design, Vol. 51, pp. 212-218, (2013).
16.  Mirzaei, M., Paydar, M. H., "A novel process for manufacturing porous 316L stainless steel with uniform pore distribution", Materials and Design, Vol. 121, pp. 442-449, (2017).
17.  Tian, D., Pang, Y., Yu, L., Sun, L., "Production and characterization of high porosity porous Fe-Cr-C alloys by the space holder leaching technique", International Journal of Minerals, Metallurgy and Materials, Vol. 23, pp. 793-798, (2016).
18.  Mutlu, I., Oktay, E., "Production and aging of highly porous 17-4 PH stainless steel", Journal of Porous Materials, Vol. 19, pp. 433-440, (2012).
19.  Sawei, Q., Xinna, Z., Qingxian, H., Renjun, D., Yan, Ju., Yuebo, H., "Research Progress on Simulation Modeling of Metal Foams", Rare Metal Materials and Engineering, Vol. 44, pp. 2670-2676, (2015).
20.  Mohammadi Nasrabadi, A. A., Hedayati, R., Sadighi, M., "Numerical and experimental study of the mechanical response of aluminum foams under compressive loading using CT data", Journal of Theoretical
and Applied Mechanics,
Vol. 54, pp. 1357-1368, (2016).
21.  Ramirez, J. F., Cardona, M., Velez, J. A., Mariaka, I., Isaza, J. A., Mendoza, E., Betancourt, S., Fernandez-Morales, P., "Numerical modeling and simulation of uniaxial compression of aluminum foams using FEM and 3D-CT images", Procedia Materials Science, Vol. 4, pp. 227-231, (2014).
‌‌‌22.  Gurson, A. L., "Continuum theory of ductile rupture by void nucleation and growth: part I – yield criteria and flow rules for porous ductile media", Journal of Engineering Material and Technology, Vol. 99, pp. 2-15, (1977).
23.  Lemaitre, J., "A continuous damage mechanics model for ductile fracture", Journal of Engineering Material and Technology, Vol. 107, pp. 83-89, (1985).
24.  Thuillier, S., Le Maout, N., Manach, P. Y., "Bending limit prediction of an aluminum thin sheet", International Journal of Material Forming, Vol. 3, pp. 223-226, (2012).
25.  Springman, M., Kuna, M., "Identification of material parameters of the Gurson–Tvergaard–Needleman model by combined experimental and numerical techniques", Computational Materials Science, Vol. 32, pp. 544-552, (2005).
26.  Slimane, A., Bouchouicha, B., Benguediab, M., Slimane, S. A., "Parametric study of the ductile damage by the Gurson–Tvergaard–Needleman model of structures in carbon steel A48-AP", Journal of Materials Research and Technology, Vol. 4, pp. 217-223, (2015).
27.  Tsiloufas, S. P., Plaut, R. L., "Ductile Fracture Characterization for Medium Carbon Steel Using Continuum Damage Mechanics", Materials Sciences and Applications, Vol. 3, pp. 745-755, (2012).
28.  Pardoen, T., Doghri, T., Delannay, F., "Experimental and numerical comparison of void growth models and void coalescence criteria for the prediction of ductile fracture in copper bars", Acta Materialia, Vol. 46, pp.541-52, (1998).
29.  Wcislik, W., "Experimental determination of critical void volume fraction fF for the Gurson Tvergaard Needleman (GTN) model", Procedia Structural Integrity, Vol. 2, pp. 1676-1683, (2016).
30.  Chu, C. C., Needleman, A., "Void nucleation effects in biaxially stretched sheets", ASME Journal of Engineering Materials and Technology, Vol. 102, pp. 249-256, (1980).
31.  Park, C., Nutt, S. R., "PM synthesis and properties of steel foams", Materials Science and Engineering A, Vol. 288, pp. 111-118, (2000).
32.  Chauhan, S., Verma, V., Prakash, U., Tewari, P. C., Khanduj, D., "Processing of Cr-Mo Alloy Steel via PM Route", Materials Today: Proceedings, Vol. 3, pp. 2899-2903, (2016).
33.  German, R. M., Suri P., and Park, S. J., "Review: liquid phase sintering", Journal of Materials Science, Vol. 44, pp. 1-9, (2009).
34.  Kossakowski, P. G., "Simulation of ductile fracture of S235JR steel using computational cells with microstructurally-based length scales", Journal of Theoretical And Applied Mechanics, Vol.50, pp. 589-607, (2012).
35.  Corigliano, A., Mariani, S., Orsatti, B., "Identification of Gurson–Tvergaard material model parameters via Kalman filtering technique: I Theory", International Journal of Fracture, Vol. 104, pp. 349-373, (2000).
36.  Tvergaard, V., "Influence of voids on shear band instabilities under plane strain condition", International Journal of Fracture, Vol. 17, pp. 389-407, (1981).
37.  Xia, L., Shih, C. F., "Ductile crack growth - II. Void nucleation and geometry effects on macroscopic fracture behavior", Journal of the Mechanics and Physics of Solids, Vol. 43, pp.1953-1981, (1995).