بررسی اثر عوامل شیمیایی و مکانیکی بر پوشش روی (Zn) آبکاری‌شده بر زیرلایۀ فولادی 12st

نوع مقاله : علمی و پژوهشی

نویسندگان

1 شناسایی، گروه مهندسی مواد، دانشکده فنی و مهندسی، دانشگاه شهرکرد.

2 گروه مهندسی مواد، دانشکده فنی و مهندسی، دانشگاه شهرکرد.

3 خوردگی و حفاظت از مواد، دانشکده مهندسی مواد، دانشگاه شهرکرد.

چکیده

هدف این پژوهش بررسی رفتار خوردگی پوشش نانوکریستالی روی (Zn) ایجادشده بر زیرلایۀ فولادیst12 به‌روش عملیات مکانیکی سطحی تدریجی (SMAT) و آبکاری الکتریکی از طریق حمام کلریدی در حضور و عدم حضور ژلاتین بوده است. برای مشخصه‌یابی ساختار و رفتار پوشش‌ها از آزمون‌های تفرق اشعۀ ایکس، میکروسکوپ الکترونی روبشی گسیل میدانی، طیف‌سنجی توزیع انرژی اشعۀ ایکس(EDS)، آزمون‌های پلاریزاسیون تافل و طیف‌سنجی امپدانس الکتروشیمیایی در محلول 5/3درصد سدیم‌کلرید و آزمون میکروسختی استفاده شد. نتایج نشان داد عملیاتSMAT باعث کاهش اندازۀ بلورک‌ها شده و از طرفی حضور ژلاتین سبب ایجاد جهت‌گیری ترجیحی در رسوب Zn شده است، به‌طوری‌که اندازۀ دانه برای نمونۀ ساده نسبت به نمونۀ در حضور ژلاتین و عملیات SMAT، از 55 به 29نانومتر و جریان خوردگی آن به‌ترتیب از 8/80 به 1/20میکروآمپر بر سانتی‌متر مربع رسیده است.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of the Effect of Chemical and Mechanical Parameters on the Electroplated Zinc Coating on Steel Substrate of st12

نویسندگان [English]

  • Samira Alaei 1
  • Behruz Shayegh borujeni 2
  • Ehsan Akbari 3
1 Materials Science and Engineering, Department of Engineering, Shahrekord University, Shahrekord, Iran
2 Department of Engineering, Shahrekord University, Shahrekord, Iran.
3 Materials Science and Engineering, Department of Engineering, Shahrekord University, Shahrekord, Iran.
چکیده [English]

This study aimed to investigate the corrosion behavior of zinc nano-crystalline coating on st12 steel substrate by surface mechanical attrition treatment (SMAT) and electroplating process into chloride bath with and without of gelatin. To study the behavior of coatings, they were characterized by using X-ray diffraction, field emission scanning electron microscopy, EDS, potentiodynamic polarization and EIS tests in 3.5 wt. % NaCl solution. The results showed that SMAT process reduced the size of the crystallites and the presence of gelatin caused the induced orientation of Zn deposition so that the grain size in the presence of gelatin and SMAT reached from 55 to 29 nm and the rate of its corrosion reached from 80.8 to 20.1 µA.cm-2.

کلیدواژه‌ها [English]

  • Zinc electroplating
  • Surface mechanical attrition treatment (SMAT)
  • Corrosion Resistance
.      ایمان بقال‌زاده، "آبکاری روی و آلیاژهای آن"، انتشارات دانشگاه صنعتی شریف، (1394).
2.    Varea, A., Pellicer, E., Pané, S., Nelson, B.J., Suriñach, S., Dolors Baró, M., and Sort, J., "Mechanical properties and corrosion behavior of nanostructured Cu-rich CuNi electrodeposited films," International Journal of Electrochemical Science, Vol. 7, pp. 1288-1302, (2012).
3.    Orinakova, R. R., Turoňová, A., Kladekova, D., Galova, M., and Smith, R. M., "Recent developments in the electrodeposition of nickel and some nickel-based alloys," Journal of Applied Electrochemistry, Vol. 36, No. 9, pp. 957-972, (2006).
4.    Tao, N., Wu, X., Sui, M., Lu, J., and Lu, K., "Grain refinement at the nanoscale via mechanical twinning and dislocation interaction in a nickel-based alloy", Journal of materials research, Vol. 19, No. 6, pp. 1623-1629, (2004).
5.    Tao, N., Zhang, H., Lu, J., and Lu, K., "Development of nanostructures in metallic materials with low stacking fault energies during surface mechanical attrition treatment (SMAT)", Materials Transactions, Vol. 44, No. 10, pp. 1919-1925, (2003).
6.    Tao, N., Lu, J., and Lu, K., "Surface nanocrystallization by surface mechanical attrition treatment", in Materials science forum, Vol. 579, pp. 91-108, (2008).
7.     شایق بروجنی، ب.، اکبری خراجی، ا.، "اثر زمان عملیات مکانیکی سطحی تدریجی (SMAT) بر رفتار خوردگی مس خالص"، فصلنامه علمی پژوهشی فرایند‌های نوین در مهندسی مواد، دانشگاه آزاد اسلامی واحد شهر مجلسی، سال نهم، شماره4، ص‌ص 73-63 ، (1394).
8.    Zhou, W., Inoue, S., Iwahashi, T., Kanai, K., Seki, K., Meyamae, T., Kim, D., Katayama, Y.,"Double layer structure and adsorption/ adsorption hysteresis of neat ionic liquid on Pt electron surface – an in-situ IR-visible sum-frequency generation spectroscopic", Electrochemistry Communications, Vol. 12, pp.672-675, (2010).
 9.   Baik, D.S., Fray, D.J.,"Electrodeposition of zinc from high acid chloride solutions", Journal of Applied Electrochemistry, Vol. 31, pp. 1141-1147, (2001).
 10. Nakano, H., Ura, T., Ouei, S., Kobayashi, S., "Effect of Preadsorption of Organic Additives on the Appearance and Morphology of Electrogalvanized Steel Sheets", Journal of the Iron and Steel Institute of Japan, Vol. 99, No. 12, pp. 700–708, (2013).
11. Sorour, N., Zhang, W., Ghali, E., Houlachiorganic, G.,"additives in zinc electrodeposition process (performance and evaluation)", Hydrometallurgy, Vol. 171, No. 9, pp. 320-332, (2017).
12. Youssef, Kh.M.S., Koch, C.C., Fedkiw, P.S., "Influence of additives and plus electrodeposition parameters on production of nanocrystalline zinc from zinc chloride electrolytes", Journal of The Electrochemical Society, Vol. 151, No. 2, pp. 103–111, (2004).
13.  ساعت‌چی،ا.، یان،ه.، هاریس،س.، "تأثیر دانسیتۀ جریان بر مورفولوژی و بافت پوشش‌های گالوانیزۀ سرد بر روی سطح فولاد"، استقلال، سال بیستم، شماره 1، (1380).
14. A. Nikfahm, I. Danaee, A. Ashrafi, M. Toroghinejad,"Effect of grain size changes on corrosion", Materials Research, Vol. 16, pp. 1379-1386, (2013).
15. Mouanga, M., Bercot, P., Raush, J.Y., "Comparison of corrosion behavior of zinc in NaOH and in NaCl solutions; Part 1: Corrosion layer characterization", Corrosion Science, Vol. 52, pp. 3984–3992, (2010).
16. Mouanga, M., P. Bercot, P., "Comparison of corrosion behavior of zinc in NaOH and in NaCl solutions; Part 2: Electrochemical analyses", Corrosion Science, Vol. 52, pp. 3993–4000, (2010).
17. Abd el-lateef, H.M., El-Sayed, A.R., Mohran H.S.,"Role of nickel alloying on anodic dissolution behavior of zinc in 3.5 % NaCl solution. Part II: Potentiodynamic, potentiostatic and galvanostatic studies", Transactions of Nonferrous Metals Society of China, Vol. 25, pp. 3152–3164, (2015).
18. Eidivandi S., Shayegh Boroujeny B., Dustmohammadi A., Akbari E., "The effect of surface mechanical attrition treatment (SMAT) time on the crystal structure and electrochemical behavior of phosphate coatings", Journal of Alloys and Compounds, Vol. 821, https://doi.org/10.1016/j.jallcom.2019.153252, (2020) .
19. Taheri R., Oguocha I.N.A. and Yannacopoulos S., "The tribological characteristics of electroless NiP coatings", Journal of Wear, Vol. 249, pp. 389-396, (2001).
20. Erten, U., Unal, H.I., Zor, S., Atapek, S.H.,"Structure and electrochemical characterization of Zn-TiO2 and Zn-WO3 nanocomposite coating electrodeposited on St37", Journal of Applied Electrochemistry, Vol. 45, pp. 991-1003, (2001).
21. McDermid, J.R., Xia, X., Zhitomisky, I., "Electrodeposition zinc and composite zinc-yttria stabilized zirconia coating", materials processing technology, Vol.209, pp.2632–2640, (2009).