اثر دمای آنیل میان بحرانی فولاد دوفازی SAPH440 بر رفتار کششی آن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی متالورژی و مواد، دانشگاه فردوسی مشهد، مشهد ایران

2 گروه مهندسی متالورژی و مواد، دانشگاه فردوسی مشهد، مشهد، ایران.

3 گروه مهندسی متالورژی و مواد، دانشگاه فردوسی مشهد. مشهد. ایران.

چکیده

فولادهای دوفازی فریتی-مارتنزیتی به دلیل دارا بودن خواصی مکانیکی قابل توجه نظیر استحکام کششی بالا و شکل پذیری مناسب دارای کاربرد گسترده‏ در صنایع خودروسازی هستند. روشن است که خواص مکانیکی این فولادها وابسته به ویژگیهای ریز ساختاری آنها از جمله کسر حجمی فازهای مختلف و چگالی نابجایی در این فازها بوده که این مشخصه های ریز ساختاری، تابعی از تاریخچه ترمومکانیکی می‏باشند. هدف از این پژوهش، بررسی اثر ریزساختار فولاد فریتی-مارتنزیتی JIS-SAPH440 بر مشخصه های رفتار کششی این فولاد نظیر استحکام کششی و نمای حساسیت تنش سیلان به نرخ کرنش آن می‏باشد. به این منظور، پس از انجام آنیل میان بحرانی در دماهایی بین 750 الی 790 درجه سانتی گراد به مدت 30 دقیقه، رفتار سیلان فولاد مذکور توسط آزمون کشش در دمای محیط در دو نرخ کرنش متفاوت مورد بررسی قرار گرفت. همچنین تحولات ریزساختاری این فولاد توسط میکروسکوپهای نوری و الکترونی روبشی و آزمون پراش اشعه ایکس، مورد مطالعه قرار گرفت. نتایج نشان داد که افزایش دمای آنیل میان بحرانی از 750 به 790 درجه سانتی گراد سبب افزایش کسرحجمی فاز مارتنزیت از 31 درصد به 45 درصد و همچنین افزایش چگالی نابجایی ها در فاز فریت از 1015 × 5 بر متر مربع به 1016 × 54/1 بر متر مربع شد. این تغییرات، سبب شد که استحکام کششی فولاد مذکور از حدود 800 مگاپاسکال به حدود 1100 مگاپاسکال افزایش یابد و در مقابل، نمای حساسیت نرخ کرنش به تنش سیلان کاهش یافته و به مقادیر ناچیز برسد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of Intercritical Annealing Temperature on the Tensile Behavior of JIS-SAPH440 Steel

نویسندگان [English]

  • Mehran Salehifar 1
  • hasan farshidi 2
  • mohamad mazinani 3
1 1- M. Sc. Graduate, Ferdowsi University of Mashhad, Mashhad, Iran.
2 Department of Material Science and Engineering,, Ferdowsi University of Mashhad, Mashhad, Iran.
3 Department of Material Science and Engineering,, Ferdowsi University of Mashhad, Mashhad, Iran.
چکیده [English]

Ferritic-Martensitic dual-phase steels are widely used in car manufacturing industries because of their attractive mechanical properties like significant tensile strength and good formability. It is clear that the mechanical properties of these steels are dependent on their microstructural characteristics like the fraction of different phases and the dislocation density of each phase, and these characteristics are affected by the thermomechanical history.  The aim of this work is to investigate the effect of the microstructure of the Ferritic-Martensitic SAPH440 steel on its tensile behavior like the tensile strength and the strain rate sensitivity of flow stress. For this purpose, the steel is subjected to inter-critical annealing at different temperatures between 750 ºC to 790 ºC and then, it is subjected to the tension test at room temperature using two different strain rates. Also, the microstructure evolutions of this steel are studied using optical microscopy, scanning electron microscopy, and X-ray diffraction. Results show that the increase of the intercritical annealing temperature from 750 ºC to 790 ºC causes an increase of the martensite fraction from 31% to 45% and the increase of dislocation density of ferrite from 5×1014 to 1.54×1016. These variations cause the increase of the tensile strength from 800 MPa to 1100 MPa while the strain rate sensitivity of the flow stress decreases to a negligible amount.

کلیدواژه‌ها [English]

  • Dual-phase steel
  • Ferritic-Martensitic
  • Tensile behavior
  • Dislocation density
  • Martensite fraction
  1. Atreya, V., Van Dokkum, J.S., Bos, C., Santofimia, M.J., "Effect of The Anisotropy of Martensitic Transformation on Ferrite Deformation in Dual-Phase Steels", Materials & Design, Vol. 219, Article No. 110805, (2022).
  2. Matsuno, T., Ando, R., Yamashita, N., Yokota, H., Goto, K., Watanabe, I., "Analysis of preliminary local hardening close to the ferrite–martensite interface in dualphase steel by a combination of finite element simulation and nanoindentation test", International Journal of Mechanical Science, 180, Article No. 105663, (2020).
  3. Leslie, W.C., "The Physical Metallurgy of Steels", Hempisphere Publishing Corp., (1981).
  4. Mazinani, M., Poole, W.J., "Effect of Martensite Plasticity on the Deformation Behavior of a Low-Carbon Dual-Phase Steel", Metallurgical and Materials Transactions A, Vol. 38, pp. 328-339, (2007).
  5. Allain, S. Y. P., Pushkareva, I., Teixeira, J., Goune, M., Scott C., "Dual-Phase Steels: The First Family of Advanced High Strength Steels", Encyclopedia of Materials: Metals and Alloys, Vol. 2, pp. 37-62, (2022).
  6. Schemmann, L., Zaefferer, S., Raabe, D., Friedel, F., Mattissen, D., "Alloying Effect on Microstructure Formation of Dual Phase Steels", Acta Materialia. Vol. 95, pp. 386-398, (2015).
  7. Mondal, D.K., Dey, R.M., "Effect of grain size on the microstructure and mechanical properties of a C-Mn-V dual-phase steel", Material Science and Engineering A, Vol. 149, pp. 173-181, (1992).
  8. Bag, A., Ray, K., Dwarakadasa, E.S., "Influence of martensite content and morphology on tensile and impact properties of high-martensite dual-phase steels", Metallurgical and Materials Transactions A, Vol. 30A, pp. 1193-1202, (1999).
  9. Sun, S., Pugh, M., "Properties of thermomechanically processed dual-phase steels containing fibrous martensite", Material Science and Engineering A, Vol. 335, pp. 298-308, (2002).
  10. Avramovic-Cingara, G., Ososkov, Y., Jain, M.K., Wilkinson, D.S., Effect of martensite distribution on damage behaviour in DP600 dual phase steels, Material Science and Engineering A, Vol. 516, pp. 7-16, (2009).
  11. Speich, G. R., Demarest, V. A. , Miller, R. L., "Formation of Austenite During Intercritical Annealing of Dual-Phase Steels", Metallurgical and Materials Transactions A, Vol. 12A, pp. 1419-1428, (1981).
  12. Maleque, M. A., Poon, Y. M., Masjuki, H. H., "The Effect of Intercritical Heat Treatment on the Mechanical Properties of AISI 3115 Steel", Journal of Materials Processing Technology, Vol. 153-154, pp. 482-487, (2004).
  13. Soliman, M., Palkowski, H., "Tensile Properties and Bake Hardening Response of Dual Phase Steels with Varied Martensite Volume Fraction", Materials Science & Engineering A, Vol. 777, Article No. 139044, (2020).
  14. Fereiduni, E., Ghasemi-Banadkouki, S. S., "Improvement of Mechanical Properties in A Dual-Phase Ferrite-Martensite AISI4140 Steel Under Tough-Strong Ferrite Formation", Materials and Design, Vol. 56, pp. 232-240, (2014).
  15. Gorni, A. A., "Steel Forming and Heat Treating Hand Book", Socorro SP, Brazil, (2006).
  16. Lawson, R. D., Metlock, D. K., Kruss, G., "An Etching Technique for Micro Alloyed Dual Phase Steels", Metallography, Vol. 13, pp. 71-87, (1980).
  17. Lai, Q., Brassart, L., Bouaziz, O., Goune, M., Verdier, M., Parry, G., Perlade, A., Brechet, Y., Pardoen, T., "Influence of Martensite Volume Fraction and Hardness on The Plastic Behavior of Dual-Phase Steels: Experiments and Micromechanical Modeling", International Journal of Plasticity, Vol. 80, pp. 187-203, (2016).
  18. Zhang, J., Di, H., Deng, Y., Misra, R.D.K., "Effect of Martensite Morphology and Volume Fraction on Strain Hardening and Fracture Behavior of Martensite-Ferrite Dual Phase Steel", Materials Science & Engineering A, Vol. 627, pp. 230-240, (2015).
  19. Ashrafi, H., Shamanian, M., Emadi, R., Saeidi, N., "Correlation of Tensile Properties and Strain Hardening Behavior with Martensite Volume Fraction in Dual-Phase Steels", Transaction of the Indian Institute of Metals, Vol. 70, pp. 1575-1584, (2017).
  20. Langdon, T. G., "The Relationship Between Strain Rate Sensitivity and Ductility in Superplastic Materials", Scripta Metallurgica, Vol. 11, pp. 997-1000, (1977).
  21. Hedworth, J., Stowell, M., "The Measurement of Strain Rate Sensitivity in Superplastic alloys", Journal of Materials Science, Vol. 6, pp. 1061-1069, (1971).
  22. Hyun Sung, J., Hoon Kim, J., Wagoner, R.H., "A Plastic Constitutive Equation Incorporating Strain, Strain-Rate, and Temperature", International Journal of Plasticity, Vol. 26, pp. 1746-1771, (2010).
  23. Williamson, G.K., Smallman, R.E., "Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-scherrer spectrum", Philosophical Magazine, 1, No. 1, pp. 34-46, (1956).
  24. Woo, W., Ungár, T.S., Feng, Z.L., Keink, E., and Clausen, B., "X-ray and neutron diffraction m easurements of dislocation density and subgrain size in a friction-stir-welded aluminum alloy", Metallurgical and Materials Transactions A, Vol. 41, No. 5, pp. 1210-1216, (2010).
  25. Lied, U., Traint, S., Werner, E. A., "An Unexpected Feature of the Stress- Strain Diagram of Dual Phase Steel", Computational Materials Science, Vol. 25, pp .122-128, (2002).
  26. Caillard, D., Martin, J.L., "Thermally Activated Mechanisms in Crystal Plasticity", Cambridge University Press, Cambridge, (2003).
  27. Nabarro, F. R. N., "Dislocations in Solids", Material Science and Engineering B, Vol. 37, Pp. 121-126, (1996).
  28. Kocks, U., Argon A., Ashby M., "Thermodynamics and Kinetics of Slip", Pergamon Press, Oxford, (1975).
  29. Yoshida, H., Takagi, S., Sakai, S., Morito, S., Ohba, T., "Crystallographoc Analysis of Lath Martensite in Ferrite-Martensite Dual Phase Steel Sheet Annealed after Cold- Rolling, ISIJ International, Vol. 55, No. 10, pp. 2198-2205, (2015).
  30. Pavlina, E.J., Van Tyne, C.J., "Correlation of Yield Strength and Tensile Strength with Hardness for Steels", Journal of Materials Engineering and Performance, Vol. 17, pp. 888–893, (2008).
  31. Bakhshi, R. , Farshidi, M. H. , Sajjadi, A.,"Strengthening of aluminium alloy 7005 through imposition of severe plastic deformation supplemented by different ageing treatments", Transaction of Nonferrous Metals Society of China, Vol. 31, pp. 2909−2921, (2021).
  32. Alibeyki, M., Mirzadeh, H., Najafi, M., Kalhor, A., "Modification of Rule of Mixtures for Estimation of the Mechanical Properties of Dual Phase Steels", Journal of Materials Engineering and Performance, Vol. 26,  2683–2688, (2017).

 

 

CAPTCHA Image