اثر آلومینیم بر ریزساختار و خواص مکانیکی فولاد پرمنگنز آستنیتیFe-18Mn-0.6C

نوع مقاله : علمی و پژوهشی

نویسندگان

1 علم و صنعت ایران

2 دانشگاه صنعتی نوشیروانی بابل

چکیده

در این مقاله اثر افزودن 3/2 درصد وزنی آلومینیم بر تغییرات ریزساختار و خواص کششی فولاد پرمنگنز آستنیتی با ترکیب
Fe-18Mn-0.6C بررسی شد. به این منظور، نمونه‌ها به صورت شمش به روش ریخته‌گری دقیق تولید شدند و پس از همگن‌سازی، نورد گرم انجام‌شد. آزمون کشش در دمای محیط انجام شد. همچنین مطالعات میکروسکوپی به وسیله میکروسکپ‌های نوری و الکترونی روبشی روی ریزساختار و سطوح شکست انجام شد. نتایج نشان داد که آلومینیم سبب بزرگ‌تر شدن دانه‌های آستنیت می‌شود. همچنین افزودن 3/2 درصد وزنی آلومینیم باعث افزایش استحکام‌ تسلیم و تغییر طول مومسان، کاهش حد نهایی کشش شده و پدیده دندانه‌ای‌شدن حین تغییرشکل مومسان را حذف می‌کند.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Aluminum Addition on the Microstructure and Mechanical Properties of High Manganese Austenitic Steel Fe-18Mn-0.6C

نویسندگان [English]

  • Saeed Majidi 1
  • Shahram Kheirandish 1
  • Majid Abbasi 2
1 Iran University of Science and Technology
2 Babol Noshirvani University of Technology
چکیده [English]

In this research, the effect of 2.3 wt.% aluminum addition on the microstructure and tensile properties of high manganese austenitic steel Fe-18Mn-0.6C was studied. For this purpose, the samples were investment cast, homogenized and hot rolled. Tensile testing was carried out at ambient temperature. Microstructural investigations and fractography on the steel samples were carried out using an optical microscope and a scanning electron microscope. The results showed that the aluminum addition increases the austenite grain size. In addition, 2.3 wt.% aluminum addition increases the yield strength and plastic strain, decreases the ultimate tensile strength and eliminates the serrated flow during plastic deformation.

کلیدواژه‌ها [English]

  • TWIP steel
  • Aluminum
  • Stacking fault energy
  • Mechanical twinning
1. Wu Z.Q., Ding H., An X.H., Han D., Liao, X.Z., “Influence of Al content on the strain-hardening behavior of aged low density Fe–Mn–Al–C steels with high Al content”, Materials Science and Engineering: A, Vol. 639, No. 15, pp. 187-191, (2015).
2. Zhang L., Song R., Zhao C., Yang F., “Work hardening behavior involving the substructural evolution of an austenite–ferrite Fe–Mn–Al–C steel”, Materials Science and Engineering: A, Vol. 640, No. 29, pp. 225-234, (2015).
3. Yang F., Song R., Li Y., Sun T., Wang, K., “Tensile deformation of low density duplex Fe–Mn–Al–C steel”, Materials & Design, Vol. 76, No. 5, pp. 32-39, (2015).
4. Abbasi M., Kheirandish Sh., Kharrazi Y., Hejazi, J., “The fracture and plastic deformation of aluminum alloyed Hadfield steels” , Materials Science and Engineering A, Vol. 513–514, No. 72–76, (2009).
5. Abbasi M., Kheirandish Sh., Kharrazi Y., Hejazi J., “On the comparison of the abrasive wear behavior of aluminum alloyed and standard Hadfield steels”, Wear, Vol. 268, No. 1–2, 4, pp. 202-207, (2010).
6. Medvedeva N.I., Park M.S., Van-Aken D.C., Medvedeva J.E., “First-principles study of Mn, Al and C distribution and their effect on stacking fault energies in FCC Fe”, Journal of Alloys and Compounds, Vol. 582, No. 5, pp.475-482, (2014).
7. Canadinc D., Sehitoglu H., Maier H.J., Chumlyakov Y.I., “Strain hardening behavior of aluminum alloyed Hadfield steel single crystals”, Acta Materialia, Vol. 53, pp. 1831-1842, (2005).
8. Bouaziz O., Allain S., Scott C., “Effect of grain and twin boundaries on the hardening mechanisms of twinning-induced plasticity steels”, Scripta Materialia, Vol. 58, pp.484-487, (2008).
9. Vercammen S., Blanpain B., De-Cooman B.C., Wollants P., “Cold rolling behavior of an austenitic Fe–30Mn–3Al–3Si TWIP-steel: the importance of deformation twinning”, Acta Materialia, Vol. 52, pp. 2005-2012, (2004).
10. Jeong J.S., Woob W., Oh K.H., Kwon S.K., Koo Y.M., “In situ neutron diffraction study of the microstructure and tensile deformation behavior in Al-added high manganese austenitic steels”, Acta Materialia, Vol. 60, pp. 2290–2299, (2012).
11. Gebhardt Th., Music D., Kossmann D., Ekholm M., Abrikosov A., Vitos L., “Elastic properties of FCC Fe–Mn–X (X=Al, Si) alloys studied by theory and experiment”, Acta Materialia, Vol. 59, pp. 3145–3155, (2011).
12. Jin J.E., Lee Y.K., ”Effects of Al on microstructure and tensile properties of C-bearing high Mn TWIP steel”, Acta Materialia, Vol. 60, pp.1680–1688, (2012).
13. Dumaya A., Chateau J.P., Allain S., Migot S., Bouaziz O., “Influence of addition elements on the stacking-fault energy and mechanical properties of an austenitic Fe–Mn–C steel” , Materials Science and Engineering A, Vol. 483–484, pp.184–187, (2008)
14. Grassel O., Kruger L., Frommeyer G., Meyer L.W., “High strength Fe-Mn-(Al,Si) TRIP/TWIP steels development properties application”, International Journal of Plasticity, Vol.16, pp.1391-1409, (2000).
15. Hamada A.S., Karjalainen L.P., Somani M.C., “The influence of aluminum on hot deformation behavior and tensile properties of high-Mn TWIP steels”, Material Science and Engineering A, Vol. 467, pp. 114-124, (2007).
16. Yoo J.D., Hwang S.W., Park K.T., “Factors influencing the tensile behavior of a Fe–28Mn–9Al–0.8C steel”, Materials Science and Engineering A, Vol. 508, pp. 234–240, (2009).
17. Koyama M., Sawaguchi T., Lee T., Lee C.S., Tsuzaki K., “Work hardening associated with ε-martensitic transformation, deformation twinning and dynamic strain aging in Fe–17Mn–0.6C and Fe–17Mn–0.8C TWIP steels”, Materials Science and Engineering A, Vol. 528, pp.7310–7316, (2011).
18. Allain S., Chateau J.P., Bouaziz O., Migot S., Guelton N., "Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe–Mn–C alloys", Materials Science and Engineering A, Vol. 387–389, pp. 158–162, (2004).
19. ASM Handbook, Vol. 1, "Properties and Selection Irons, Steel, and High Performance Alloy", (2005).
20. Razavi Gh.R., Ansaripour A., Monajatizadeh H., Toroghinejad M.R., “An investigation on full annealing temperature and annealing twins density in Fe-33Mn-3Si-2Al high-manganese steel”, Journal of Advanced Materials and Processing, Vol. 1, pp. 3-9, (2012).
21. ASTM E8M-04, “Standard Test Methods for Tension Testing of Metallic Materials [Metric]”, ASTM International, West Conshohocken, PA 19428-2959, United States, (2004).
22. ASM Handbook, Vol. 9, “Metallography and Microstructures”, Austenitic Manganese Steel Castings, (2004).
23. رید-هیل ر.ای.، عباسچیان ر.، ترجمه صالحی م.ت.، عبداله‌پور ح.، حسینی‌نسب ف.، "اصول متالورژی فیزیکی"، ویرایش سوم، مرکز انتشارات دانشگاه علم و صنعت ایران، (1386).
24. Almeida L.H., May I., Emygdio P.R.O., “Mechanistic modeling of dynamic strain aging in austenitic stainless steels”, Material characterization, Vol. 41, pp. 137-150, (1998).
25. Hong S.G., Lee S.B., "Mechanism of dynamic strain aging and characterization of its effect on the low-cycle fatigue behavior in type 316L stainless steel", Journal of Nuclear Materials, Vol. 340, pp. 307–314, (2005)
26. Owen W.S., Grujicic M., “Strain aging of austenitic Hadfield manganese steel”, Acta Material., Vol. 47, pp. 111-126, (1999).
27. Shun S., Wan C.M., Byrne J.G., “Serrated flow in austenitic Fe-Mn-Al-C alloys”, Scripta Metallurgica, Vol. 25, pp. 1769-1774, (1991).
28. Meyers M.A., Vohringer O., Lubarda V.A., “The onset of twinning metals: A constitutive description”, Acta Material, Vol. 49, pp. 4025-4039, (2001).
29. Shun T., Wan C.M., Byrne J.G., "A study of work hardening in austenitic Fe-Mn-Al-C alloys" , Acta Material, Vol. 40, pp. 3407-3412, (1992).
30. عباسی م.،" بررسی تاثیر آلومینیم بر ساختار و خواص مکانیکی فولادهای آستنیتی منگنزی"، رساله دکتری، دانشگاه علم و صنعت ایران، (1388).
31. عباسی م.، حجازی ج.، خیراندیش ش.، خرازی ی.، "ارتباط بین کرنش دوقلویی و پدیده چروکیدگی سطحی در تغییر شکل مومسان فولاد آستنیتی منگنزی"، نشریه مهندسی متالورژی و مواد دانشگاه فردوسی مشهد، سال 25، شماره 2 بهار و تابستان ص 1-12، (1393).
CAPTCHA Image